Finite Toeplitz matrices and sharp Littlewood conjectures
Algebra i analiz, Tome 13 (2001) no. 1, pp. 39-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sharp Littlewood conjecture states that for fixed $N\ge1$, if $D(z)=1+z+z^2+\dots+z^{N-1}$, then on the unit circle $|z|=1$, $\|D\|_1$ is the minimum of $\|f\|_1$ for $f$ of the form $f(z)=c_0+c_1z^{n_1}+\dots+c_{N-1}z^{n_{N-1}}$ with $|c_k|=1$; more generally, $\|D\|_p$ is the $\min/\max$ of $\|f\|_p$ for fixed $p\in[0,2]/[2,\infty]$. In the paper this is proved for the special case where $f(z)=1\pm z\pm z\pm z^2\pm\dots\pm z^{N-1}$ and $p\in[0,4]$, by first proving stronger results for the eigenvalues of finite sections of the Toeplitz matrices of $|D|^2$ and $|f|^2$, in particular, for their Schatten $p$-norms. Several conjectures are also stated to the effect that these stronger results should be true for the general case of $f$. The approach is motivated by the uncertainty principle and two theorems of Sze̋go.
Keywords: Sze̋go limit theorem, eigenvalues, totally unimodular matrix.
@article{AA_2001_13_1_a2,
     author = {I. Kleme\v{s}},
     title = {Finite {Toeplitz} matrices and sharp {Littlewood} conjectures},
     journal = {Algebra i analiz},
     pages = {39--59},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2001_13_1_a2/}
}
TY  - JOUR
AU  - I. Klemeš
TI  - Finite Toeplitz matrices and sharp Littlewood conjectures
JO  - Algebra i analiz
PY  - 2001
SP  - 39
EP  - 59
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2001_13_1_a2/
LA  - en
ID  - AA_2001_13_1_a2
ER  - 
%0 Journal Article
%A I. Klemeš
%T Finite Toeplitz matrices and sharp Littlewood conjectures
%J Algebra i analiz
%D 2001
%P 39-59
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2001_13_1_a2/
%G en
%F AA_2001_13_1_a2
I. Klemeš. Finite Toeplitz matrices and sharp Littlewood conjectures. Algebra i analiz, Tome 13 (2001) no. 1, pp. 39-59. http://geodesic.mathdoc.fr/item/AA_2001_13_1_a2/