Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a~least superharmonic majorant
Algebra i analiz, Tome 10 (1998) no. 3, pp. 31-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this,paper and the following one, it is shown that if $A\pi$ and $\eta>0$ is sufficiently small (depending on $A$), the entire functions $f(z)$ of exponential type $\le A$ satisfying $\sum^{\infty}_{m=-\infty}(\log^+|f(n)|/(1+n^2))\le\eta$ form a normal family (in $\mathbb C$). General properties of least superharmonic majorants are used to obtain this result, and from it the multiplier theorem of Beurling and Malliavin is readily derived.
Keywords: Entire function of exponential type, least superharmonic majorant, logarithmic sum, BeurlingT-Malliavin multiplier theorem.
@article{AA_1998_10_3_a1,
     author = {P. Koosis and Henrik L. Pedersen},
     title = {Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a~least superharmonic majorant},
     journal = {Algebra i analiz},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1998_10_3_a1/}
}
TY  - JOUR
AU  - P. Koosis
AU  - Henrik L. Pedersen
TI  - Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a~least superharmonic majorant
JO  - Algebra i analiz
PY  - 1998
SP  - 31
EP  - 44
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1998_10_3_a1/
LA  - en
ID  - AA_1998_10_3_a1
ER  - 
%0 Journal Article
%A P. Koosis
%A Henrik L. Pedersen
%T Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a~least superharmonic majorant
%J Algebra i analiz
%D 1998
%P 31-44
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1998_10_3_a1/
%G en
%F AA_1998_10_3_a1
P. Koosis; Henrik L. Pedersen. Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a~least superharmonic majorant. Algebra i analiz, Tome 10 (1998) no. 3, pp. 31-44. http://geodesic.mathdoc.fr/item/AA_1998_10_3_a1/