Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a least superharmonic majorant
Algebra i analiz, Tome 10 (1998) no. 3, pp. 31-44
Cet article a éte moissonné depuis la source Math-Net.Ru
In this,paper and the following one, it is shown that if $A<\pi$ and $\eta>0$ is sufficiently small (depending on $A$), the entire functions $f(z)$ of exponential type $\le A$ satisfying $\sum^{\infty}_{m=-\infty}(\log^+|f(n)|/(1+n^2))\le\eta$ form a normal family (in $\mathbb C$). General properties of least superharmonic majorants are used to obtain this result, and from it the multiplier theorem of Beurling and Malliavin is readily derived.
Keywords:
Entire function of exponential type, least superharmonic majorant, logarithmic sum, BeurlingT-Malliavin multiplier theorem.
@article{AA_1998_10_3_a1,
author = {P. Koosis and Henrik L. Pedersen},
title = {Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a~least superharmonic majorant},
journal = {Algebra i analiz},
pages = {31--44},
year = {1998},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1998_10_3_a1/}
}
TY - JOUR AU - P. Koosis AU - Henrik L. Pedersen TI - Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a least superharmonic majorant JO - Algebra i analiz PY - 1998 SP - 31 EP - 44 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/AA_1998_10_3_a1/ LA - en ID - AA_1998_10_3_a1 ER -
%0 Journal Article %A P. Koosis %A Henrik L. Pedersen %T Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a least superharmonic majorant %J Algebra i analiz %D 1998 %P 31-44 %V 10 %N 3 %U http://geodesic.mathdoc.fr/item/AA_1998_10_3_a1/ %G en %F AA_1998_10_3_a1
P. Koosis; Henrik L. Pedersen. Lower bounds on the values of an entire function of exponential type at certain integers, in terms of a least superharmonic majorant. Algebra i analiz, Tome 10 (1998) no. 3, pp. 31-44. http://geodesic.mathdoc.fr/item/AA_1998_10_3_a1/