Maximum principle for parabolic systems
Algebra i analiz, Tome 3 (1991) no. 6, pp. 155-163
Cet article a éte moissonné depuis la source Math-Net.Ru
We show, under very general assumptions on the datum $u$, that Cauchy–Dirichlet problem $$ \begin{cases} -\sum\limits_{ij=1}^nD_i(A^0_{ij}D_j v)+\frac{\partial v}{\partial t}=0\quad\text{in}\quad Q,\\ v=u\quad\text{on the parabolic boundary $\Gamma_Q$ of $Q$} \end{cases} $$ admits a unique bounded solution.
Keywords:
parabolic systems, maximum principle.
@article{AA_1991_3_6_a5,
author = {M. Marino and A. Maugeri},
title = {Maximum principle for parabolic systems},
journal = {Algebra i analiz},
pages = {155--163},
year = {1991},
volume = {3},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1991_3_6_a5/}
}
M. Marino; A. Maugeri. Maximum principle for parabolic systems. Algebra i analiz, Tome 3 (1991) no. 6, pp. 155-163. http://geodesic.mathdoc.fr/item/AA_1991_3_6_a5/