Maximum principle for parabolic systems
Algebra i analiz, Tome 3 (1991) no. 6, pp. 155-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show, under very general assumptions on the datum $u$, that Cauchy–Dirichlet problem $$ \begin{cases} -\sum\limits_{ij=1}^nD_i(A^0_{ij}D_j v)+\frac{\partial v}{\partial t}=0\quad\text{in}\quad Q,\\ v=u\quad\text{on the parabolic boundary $\Gamma_Q$ of $Q$} \end{cases} $$ admits a unique bounded solution.
Keywords: parabolic systems, maximum principle.
@article{AA_1991_3_6_a5,
     author = {M. Marino and A. Maugeri},
     title = {Maximum principle for parabolic systems},
     journal = {Algebra i analiz},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1991_3_6_a5/}
}
TY  - JOUR
AU  - M. Marino
AU  - A. Maugeri
TI  - Maximum principle for parabolic systems
JO  - Algebra i analiz
PY  - 1991
SP  - 155
EP  - 163
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1991_3_6_a5/
LA  - en
ID  - AA_1991_3_6_a5
ER  - 
%0 Journal Article
%A M. Marino
%A A. Maugeri
%T Maximum principle for parabolic systems
%J Algebra i analiz
%D 1991
%P 155-163
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1991_3_6_a5/
%G en
%F AA_1991_3_6_a5
M. Marino; A. Maugeri. Maximum principle for parabolic systems. Algebra i analiz, Tome 3 (1991) no. 6, pp. 155-163. http://geodesic.mathdoc.fr/item/AA_1991_3_6_a5/