On approximations of nonzero-sum uniformly continuous ergodic stochastic games
Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 221-228
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a class of uniformly ergodic nonzero-sum stochastic games with the expected average payoff criterion, a separable metric state space and compact metric action spaces. We assume that the payoff and transition probability functions are uniformly continuous. Our aim is to prove the existence of stationary ε-equilibria for that class of ergodic stochastic games. This theorem extends to a much wider class of stochastic games a result proven recently by Bielecki [2].
DOI :
10.4064/am-26-2-221-228
Keywords:
Nash equilibrium, general state space, nonzero-sum Markov game, long run average reward criterion
Affiliations des auteurs :
Andrzej Nowak 1
@article{10_4064_am_26_2_221_228,
author = {Andrzej Nowak},
title = {On approximations of nonzero-sum uniformly continuous ergodic stochastic games},
journal = {Applicationes Mathematicae},
pages = {221--228},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {1999},
doi = {10.4064/am-26-2-221-228},
zbl = {1050.91009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-221-228/}
}
TY - JOUR AU - Andrzej Nowak TI - On approximations of nonzero-sum uniformly continuous ergodic stochastic games JO - Applicationes Mathematicae PY - 1999 SP - 221 EP - 228 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-221-228/ DO - 10.4064/am-26-2-221-228 LA - en ID - 10_4064_am_26_2_221_228 ER -
%0 Journal Article %A Andrzej Nowak %T On approximations of nonzero-sum uniformly continuous ergodic stochastic games %J Applicationes Mathematicae %D 1999 %P 221-228 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am-26-2-221-228/ %R 10.4064/am-26-2-221-228 %G en %F 10_4064_am_26_2_221_228
Andrzej Nowak. On approximations of nonzero-sum uniformly continuous ergodic stochastic games. Applicationes Mathematicae, Tome 26 (1999) no. 2, pp. 221-228. doi: 10.4064/am-26-2-221-228
Cité par Sources :