Weak Hölder convergence of processes with application to the perturbed empirical process
Applicationes Mathematicae, Tome 26 (1999) no. 1, pp. 63-83
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider stochastic processes as random elements in some spaces of Hölder functions vanishing at infinity. The corresponding scale of spaces $C^{α,0}_0$ is shown to be isomorphic to some scale of Banach sequence spaces. This enables us to obtain some tightness criterion in these spaces. As an application, we prove the weak Hölder convergence of the convolution-smoothed empirical process of an i.i.d. sample $(X_1,...,X_n)$ under a natural assumption about the regularity of the marginal distribution function F of the sample. In particular, when F is Lipschitz, the best possible bound α1/2 for the weak α-Hölder convergence of such processes is achieved.
DOI :
10.4064/am-26-1-63-83
Keywords:
triangular functions, Schauder decomposition, Hölder space, tightness, Brownian bridge, perturbed empirical process
Affiliations des auteurs :
Djamel Hamadouche 1 ; Charles Suquet 1
@article{10_4064_am_26_1_63_83,
author = {Djamel Hamadouche and Charles Suquet},
title = {Weak {H\"older} convergence of processes with application to the perturbed empirical process},
journal = {Applicationes Mathematicae},
pages = {63--83},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {1999},
doi = {10.4064/am-26-1-63-83},
zbl = {0998.60008},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-26-1-63-83/}
}
TY - JOUR AU - Djamel Hamadouche AU - Charles Suquet TI - Weak Hölder convergence of processes with application to the perturbed empirical process JO - Applicationes Mathematicae PY - 1999 SP - 63 EP - 83 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-26-1-63-83/ DO - 10.4064/am-26-1-63-83 LA - en ID - 10_4064_am_26_1_63_83 ER -
%0 Journal Article %A Djamel Hamadouche %A Charles Suquet %T Weak Hölder convergence of processes with application to the perturbed empirical process %J Applicationes Mathematicae %D 1999 %P 63-83 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am-26-1-63-83/ %R 10.4064/am-26-1-63-83 %G en %F 10_4064_am_26_1_63_83
Djamel Hamadouche; Charles Suquet. Weak Hölder convergence of processes with application to the perturbed empirical process. Applicationes Mathematicae, Tome 26 (1999) no. 1, pp. 63-83. doi: 10.4064/am-26-1-63-83
Cité par Sources :