Regularity of the multidimensional scaling functions: estimation of the $L^{p}$-Sobolev exponent
Applicationes Mathematicae, Tome 25 (1999) no. 4, pp. 431-447
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The relationship between the spectral properties of the transfer operator corresponding to a wavelet refinement equation and the $L^p$-Sobolev regularity of solution for the equation is established.
DOI :
10.4064/am-25-4-431-447
Keywords:
$L^p$-Sobolev exponent, transfer operator, refinement equation, scaling functions, spectral radius
Affiliations des auteurs :
Jarosław Kotowicz 1
@article{10_4064_am_25_4_431_447,
author = {Jaros{\l}aw Kotowicz},
title = {Regularity of the multidimensional scaling functions: estimation of the $L^{p}${-Sobolev} exponent},
journal = {Applicationes Mathematicae},
pages = {431--447},
publisher = {mathdoc},
volume = {25},
number = {4},
year = {1999},
doi = {10.4064/am-25-4-431-447},
zbl = {0995.42019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-25-4-431-447/}
}
TY - JOUR
AU - Jarosław Kotowicz
TI - Regularity of the multidimensional scaling functions: estimation of the $L^{p}$-Sobolev exponent
JO - Applicationes Mathematicae
PY - 1999
SP - 431
EP - 447
VL - 25
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/am-25-4-431-447/
DO - 10.4064/am-25-4-431-447
LA - en
ID - 10_4064_am_25_4_431_447
ER -
%0 Journal Article
%A Jarosław Kotowicz
%T Regularity of the multidimensional scaling functions: estimation of the $L^{p}$-Sobolev exponent
%J Applicationes Mathematicae
%D 1999
%P 431-447
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/am-25-4-431-447/
%R 10.4064/am-25-4-431-447
%G en
%F 10_4064_am_25_4_431_447
Jarosław Kotowicz. Regularity of the multidimensional scaling functions: estimation of the $L^{p}$-Sobolev exponent. Applicationes Mathematicae, Tome 25 (1999) no. 4, pp. 431-447. doi: 10.4064/am-25-4-431-447
Cité par Sources :