Optimal solutions of multivariate coupling problems
Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 325-338
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Some necessary and some sufficient conditions are established for the explicit construction and characterization of optimal solutions of multivariate transportation (coupling) problems. The proofs are based on ideas from duality theory and nonconvex optimization theory. Applications are given to multivariate optimal coupling problems w.r.t. minimal $l_p$-type metrics, where fairly explicit and complete characterizations of optimal transportation plans (couplings) are obtained. The results are of interest even in the one-dimensional case. For the first time an explicit criterion is given for the construction of optimal multivariate couplings for the Kantorovich metric $l_1$.
DOI :
10.4064/am-23-3-325-338
Keywords:
$l_p$-metric, c-convex functions, optimal couplings, transportation problem
Affiliations des auteurs :
Ludger Rüschendorf 1
@article{10_4064_am_23_3_325_338, author = {Ludger R\"uschendorf}, title = {Optimal solutions of multivariate coupling problems}, journal = {Applicationes Mathematicae}, pages = {325--338}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {1996}, doi = {10.4064/am-23-3-325-338}, zbl = {0844.62047}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-325-338/} }
TY - JOUR AU - Ludger Rüschendorf TI - Optimal solutions of multivariate coupling problems JO - Applicationes Mathematicae PY - 1996 SP - 325 EP - 338 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-23-3-325-338/ DO - 10.4064/am-23-3-325-338 LA - en ID - 10_4064_am_23_3_325_338 ER -
Ludger Rüschendorf. Optimal solutions of multivariate coupling problems. Applicationes Mathematicae, Tome 23 (1996) no. 3, pp. 325-338. doi: 10.4064/am-23-3-325-338
Cité par Sources :