On least squares estimation of Fourier coefficients and of the regression function
Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 91-102
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The problem of nonparametric function fitting with the observation model $y_i = f(x_i) + η_i$, i=1,...,n, is considered, where $η_i$ are independent random variables with zero mean value and finite variance, and $x_i \in [a,b] \subset \R^1$, i=1,...,n, form a random sample from a distribution with density $ϱ \in L^1[a,b]$ and are independent of the errors $η_i$, i=1,...,n. The asymptotic properties of the estimator $\widehat{f}_{N(n)}(x) = \sum_{k=1}^{N(n)} \widehat{c}_ke_k(x)$ for $f \in L^2[a,b]$ and $\widehat{c}^{N(n)}=( \widehat{c}_1,..., \widehat{c}_{N(n)})^T$ obtained by the least squares method as well as the limits in probability of the estimators $\widehat{c}_k$, k=1,...,N, for fixed N, are studied in the case when the functions $e_k$, k=1,2,..., forming a complete orthonormal system in $L^2\[a,b\]$ are analytic.
DOI :
10.4064/am-22-1-91-102
Keywords:
Fourier series, consistent estimator, least squares method, regression
Affiliations des auteurs :
Waldemar Popiński 1
@article{10_4064_am_22_1_91_102,
author = {Waldemar Popi\'nski},
title = {On least squares estimation of {Fourier} coefficients and of the regression function},
journal = {Applicationes Mathematicae},
pages = {91--102},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1993},
doi = {10.4064/am-22-1-91-102},
zbl = {0789.62032},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-91-102/}
}
TY - JOUR AU - Waldemar Popiński TI - On least squares estimation of Fourier coefficients and of the regression function JO - Applicationes Mathematicae PY - 1993 SP - 91 EP - 102 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-91-102/ DO - 10.4064/am-22-1-91-102 LA - en ID - 10_4064_am_22_1_91_102 ER -
%0 Journal Article %A Waldemar Popiński %T On least squares estimation of Fourier coefficients and of the regression function %J Applicationes Mathematicae %D 1993 %P 91-102 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-91-102/ %R 10.4064/am-22-1-91-102 %G en %F 10_4064_am_22_1_91_102
Waldemar Popiński. On least squares estimation of Fourier coefficients and of the regression function. Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 91-102. doi: 10.4064/am-22-1-91-102
Cité par Sources :