On a globalization property
Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 69-73
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let (X,τ) be a topological space. Let Φ be a class of real-valued functions defined on X. A function ϕ ∈ Φ is called a local Φ-subgradient of a function f:X → ℝ at a point $x_0$ if there is a neighbourhood U of $x_0$ such that f(x) - f($x_0$) ≥ ϕ(x) - ϕ($x_0$) for all x ∈ U. A function ϕ ∈ Φ is called a global Φ-subgradient of f at $x_0$ if the inequality holds for all x ∈ X. The following properties of the class Φ are investigated: (a) when the existence of a local Φ-subgradient of a function f at each point implies the existence of a global Φ-subgradient of f at each point (globalization property), (b) when each local Φ-subgradient can be extended to a global Φ-subgradient (strong globalization property).
DOI :
10.4064/am-22-1-69-73
Keywords:
Φ-subgradients, globalization property
Affiliations des auteurs :
Stefan Rolewicz 1
@article{10_4064_am_22_1_69_73,
author = {Stefan Rolewicz},
title = {On a globalization property},
journal = {Applicationes Mathematicae},
pages = {69--73},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1993},
doi = {10.4064/am-22-1-69-73},
zbl = {0797.52002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-69-73/}
}
Stefan Rolewicz. On a globalization property. Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 69-73. doi: 10.4064/am-22-1-69-73
Cité par Sources :