Least empirical risk procedures in statistical inference
Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 55-67
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the empirical risk function $Q_n(α)={1\over n} \sum_{i=1}^n \cdot f(α,Z_i)$ (for iid $Z_i$'s) under the assumption that f(α,z) is convex with respect to α. Asymptotics of the minimum of $Q_n(α)$ is investigated. Tests for linear hypotheses are derived. Our results generalize some of those concerning LAD estimators and related tests.
DOI :
10.4064/am-22-1-55-67
Keywords:
least distances, convex minimization, tests of significance, least absolute deviations, asymptotics
Affiliations des auteurs :
Wojciech Niemiro 1
@article{10_4064_am_22_1_55_67,
author = {Wojciech Niemiro},
title = {Least empirical risk procedures in statistical inference},
journal = {Applicationes Mathematicae},
pages = {55--67},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1993},
doi = {10.4064/am-22-1-55-67},
zbl = {0797.62021},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-55-67/}
}
TY - JOUR AU - Wojciech Niemiro TI - Least empirical risk procedures in statistical inference JO - Applicationes Mathematicae PY - 1993 SP - 55 EP - 67 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-55-67/ DO - 10.4064/am-22-1-55-67 LA - en ID - 10_4064_am_22_1_55_67 ER -
Wojciech Niemiro. Least empirical risk procedures in statistical inference. Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 55-67. doi: 10.4064/am-22-1-55-67
Cité par Sources :