Bayes robustness via the Kolmogorov metric
Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 139-143
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An upper bound for the Kolmogorov distance between the posterior distributions in terms of that between the prior distributions is given. For some likelihood functions the inequality is sharp. Applications to assessing Bayes robustness are presented.
DOI :
10.4064/am-22-1-139-143
Keywords:
stability of Bayes procedures, Bayes robustness, Kolmogorov metric
Affiliations des auteurs :
Agata Boratyńska 1 ; Ryszard Zieliński 1
@article{10_4064_am_22_1_139_143,
author = {Agata Boraty\'nska and Ryszard Zieli\'nski},
title = {Bayes robustness via the {Kolmogorov} metric},
journal = {Applicationes Mathematicae},
pages = {139--143},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {1993},
doi = {10.4064/am-22-1-139-143},
zbl = {0789.62022},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-139-143/}
}
TY - JOUR AU - Agata Boratyńska AU - Ryszard Zieliński TI - Bayes robustness via the Kolmogorov metric JO - Applicationes Mathematicae PY - 1993 SP - 139 EP - 143 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-139-143/ DO - 10.4064/am-22-1-139-143 LA - en ID - 10_4064_am_22_1_139_143 ER -
%0 Journal Article %A Agata Boratyńska %A Ryszard Zieliński %T Bayes robustness via the Kolmogorov metric %J Applicationes Mathematicae %D 1993 %P 139-143 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am-22-1-139-143/ %R 10.4064/am-22-1-139-143 %G en %F 10_4064_am_22_1_139_143
Agata Boratyńska; Ryszard Zieliński. Bayes robustness via the Kolmogorov metric. Applicationes Mathematicae, Tome 22 (1993) no. 1, pp. 139-143. doi: 10.4064/am-22-1-139-143
Cité par Sources :