Three solutions for a nonlinear Neumann boundary value problem
Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 257-266
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to establish the existence of at least three solutions for the nonlinear Neumann
boundary-value problem involving the $p(x$)-Laplacian of the form
\begin{align*}
{-}\Delta_{p(x)} u+a(x)|u|^{p(x)-2}u =\mu g(x,u)\quad \text{in } \Omega, \\
|\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu}=\lambda f(x,u) \quad
\text{on } \partial\Omega.
\end{align*}
Our technical approach is based on the three critical points theorem
due to Ricceri.
DOI :
10.4064/am41-2-13
Keywords:
paper establish existence least three solutions nonlinear neumann boundary value problem involving laplacian form begin align* delta quad text omega nabla frac partial partial lambda quad text partial omega end align* technical approach based three critical points theorem due ricceri
Affiliations des auteurs :
Najib Tsouli 1 ; Omar Chakrone 1 ; Omar Darhouche 1 ; Mostafa Rahmani 1
@article{10_4064_am41_2_13,
author = {Najib Tsouli and Omar Chakrone and Omar Darhouche and Mostafa Rahmani},
title = {Three solutions for a nonlinear {Neumann} boundary value problem},
journal = {Applicationes Mathematicae},
pages = {257--266},
publisher = {mathdoc},
volume = {41},
number = {2-3},
year = {2014},
doi = {10.4064/am41-2-13},
zbl = {1304.35295},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am41-2-13/}
}
TY - JOUR AU - Najib Tsouli AU - Omar Chakrone AU - Omar Darhouche AU - Mostafa Rahmani TI - Three solutions for a nonlinear Neumann boundary value problem JO - Applicationes Mathematicae PY - 2014 SP - 257 EP - 266 VL - 41 IS - 2-3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am41-2-13/ DO - 10.4064/am41-2-13 LA - en ID - 10_4064_am41_2_13 ER -
%0 Journal Article %A Najib Tsouli %A Omar Chakrone %A Omar Darhouche %A Mostafa Rahmani %T Three solutions for a nonlinear Neumann boundary value problem %J Applicationes Mathematicae %D 2014 %P 257-266 %V 41 %N 2-3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am41-2-13/ %R 10.4064/am41-2-13 %G en %F 10_4064_am41_2_13
Najib Tsouli; Omar Chakrone; Omar Darhouche; Mostafa Rahmani. Three solutions for a nonlinear Neumann boundary value problem. Applicationes Mathematicae, Tome 41 (2014) no. 2-3, pp. 257-266. doi: 10.4064/am41-2-13
Cité par Sources :