Global existence for nonlinear system of wave equations in 3-D domains
Applicationes Mathematicae, Tome 38 (2011) no. 4, pp. 435-452
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the initial-boundary problem for a nonlinear system of wave equations with Hamilton structure under Dirichlet's condition. We use the local-in-time Strichartz estimates from [Burq et al., J. Amer. Math. Soc. 21 (2008), 831–845], Morawetz–Pohožaev's identity derived in [Miao and Zhu, Nonlinear Anal. 67 (2007), 3136–3151], and an a priori estimate of the solutions restricted to the boundary to show the existence of global and unique solutions.
DOI :
10.4064/am38-4-3
Keywords:
study initial boundary problem nonlinear system wave equations hamilton structure under dirichlets condition local in time strichartz estimates burq amer math soc morawetz poho aevs identity derived miao zhu nonlinear anal priori estimate solutions restricted boundary existence global unique solutions
Affiliations des auteurs :
Jianwei Yang 1
@article{10_4064_am38_4_3, author = {Jianwei Yang}, title = {Global existence for nonlinear system of wave equations in {3-D} domains}, journal = {Applicationes Mathematicae}, pages = {435--452}, publisher = {mathdoc}, volume = {38}, number = {4}, year = {2011}, doi = {10.4064/am38-4-3}, zbl = {1231.35114}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/am38-4-3/} }
TY - JOUR AU - Jianwei Yang TI - Global existence for nonlinear system of wave equations in 3-D domains JO - Applicationes Mathematicae PY - 2011 SP - 435 EP - 452 VL - 38 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am38-4-3/ DO - 10.4064/am38-4-3 LA - en ID - 10_4064_am38_4_3 ER -
Jianwei Yang. Global existence for nonlinear system of wave equations in 3-D domains. Applicationes Mathematicae, Tome 38 (2011) no. 4, pp. 435-452. doi: 10.4064/am38-4-3
Cité par Sources :