What is the best approximation of ruin probability in infinite time?
Applicationes Mathematicae, Tome 32 (2005) no. 2, pp. 155-176
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We compare 12 different approximations of ruin probability in infinite time studying typical light- and
heavy-tailed claim size distributions, namely exponential, mixture of exponentials, gamma, lognormal, Weibull, loggamma, Pareto and Burr. We show
that approximation based on the Pollaczek–Khinchin formula gives most accurate results, in fact it can be chosen as a reference method. We
also introduce a promising modification to the De Vylder approximation.
DOI :
10.4064/am32-2-4
Keywords:
compare different approximations ruin probability infinite time studying typical light heavy tailed claim size distributions namely exponential mixture exponentials gamma lognormal weibull loggamma pareto burr approximation based pollaczek khinchin formula gives accurate results chosen reference method introduce promising modification vylder approximation
Affiliations des auteurs :
Krzysztof Burnecki 1 ; Paweł Miśta 2 ; Aleksander Weron 2
@article{10_4064_am32_2_4,
author = {Krzysztof Burnecki and Pawe{\l} Mi\'sta and Aleksander Weron},
title = {What is the best approximation of ruin probability in infinite time?},
journal = {Applicationes Mathematicae},
pages = {155--176},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {2005},
doi = {10.4064/am32-2-4},
zbl = {1075.62093},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am32-2-4/}
}
TY - JOUR AU - Krzysztof Burnecki AU - Paweł Miśta AU - Aleksander Weron TI - What is the best approximation of ruin probability in infinite time? JO - Applicationes Mathematicae PY - 2005 SP - 155 EP - 176 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am32-2-4/ DO - 10.4064/am32-2-4 LA - en ID - 10_4064_am32_2_4 ER -
%0 Journal Article %A Krzysztof Burnecki %A Paweł Miśta %A Aleksander Weron %T What is the best approximation of ruin probability in infinite time? %J Applicationes Mathematicae %D 2005 %P 155-176 %V 32 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/am32-2-4/ %R 10.4064/am32-2-4 %G en %F 10_4064_am32_2_4
Krzysztof Burnecki; Paweł Miśta; Aleksander Weron. What is the best approximation of ruin probability in infinite time?. Applicationes Mathematicae, Tome 32 (2005) no. 2, pp. 155-176. doi: 10.4064/am32-2-4
Cité par Sources :