The most stable estimator of location under integrable contaminants
Applicationes Mathematicae, Tome 29 (2002) no. 1, pp. 1-6
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If a symmetric distribution is $\varepsilon $-contaminated and the contaminants have finite first moments, the median may cease to be the most robust estimator of location.
DOI :
10.4064/am29-1-1
Keywords:
symmetric distribution varepsilon contaminated contaminants have finite first moments median may cease robust estimator location
Affiliations des auteurs :
Ryszard Zieliński 1
@article{10_4064_am29_1_1,
author = {Ryszard Zieli\'nski},
title = {The most stable estimator of location under integrable contaminants},
journal = {Applicationes Mathematicae},
pages = {1--6},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2002},
doi = {10.4064/am29-1-1},
zbl = {1053.62040},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/am29-1-1/}
}
TY - JOUR AU - Ryszard Zieliński TI - The most stable estimator of location under integrable contaminants JO - Applicationes Mathematicae PY - 2002 SP - 1 EP - 6 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/am29-1-1/ DO - 10.4064/am29-1-1 LA - en ID - 10_4064_am29_1_1 ER -
Ryszard Zieliński. The most stable estimator of location under integrable contaminants. Applicationes Mathematicae, Tome 29 (2002) no. 1, pp. 1-6. doi: 10.4064/am29-1-1
Cité par Sources :