Voir la notice de l'article provenant de la source Annals of Mathematics website
We define the spherical Hecke algebra $\mathcal{H}$ for an almost split Kac-Moody group $G$ over a local non-archimedean field. We use the hovel $\mathscr I$ associated to this situation, which is the analogue of the Bruhat-Tits building for a reductive group. The stabilizer $K$ of a special point on the standard apartment plays the role of a maximal open compact subgroup. We can define $\mathcal{H}$ as the algebra of $K$-bi-invariant functions on $G$ with almost finite support. As two points in the hovel are not always in a same apartment, this support has to be in some large subsemigroup $G^+$ of $G$. We prove that the structure constants of $\mathcal{H}$ are polynomials in the cardinality of the residue field, with integer coefficients depending on the geometry of the standard apartment. We also prove the Satake isomorphism between $\mathcal{H}$ and the algebra of Weyl invariant elements in some completion of a Laurent polynomial algebra. In particular, $\mathcal{H}$ is always commutative. Actually, our results apply to abstract “locally finite” hovels, so that we can define the spherical algebra with unequal parameters.
Stéphane Gaussent 1 ; Guy Rousseau 2
@article{10_4007_annals_2014_180_3_5,
author = {St\'ephane Gaussent and Guy Rousseau},
title = {Spherical {Hecke} algebras for {Kac-Moody} groups over local fields},
journal = {Annals of mathematics},
pages = {1051--1087},
publisher = {mathdoc},
volume = {180},
number = {3},
year = {2014},
doi = {10.4007/annals.2014.180.3.5},
mrnumber = {3245012},
zbl = {1315.20046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.5/}
}
TY - JOUR AU - Stéphane Gaussent AU - Guy Rousseau TI - Spherical Hecke algebras for Kac-Moody groups over local fields JO - Annals of mathematics PY - 2014 SP - 1051 EP - 1087 VL - 180 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.5/ DO - 10.4007/annals.2014.180.3.5 LA - en ID - 10_4007_annals_2014_180_3_5 ER -
%0 Journal Article %A Stéphane Gaussent %A Guy Rousseau %T Spherical Hecke algebras for Kac-Moody groups over local fields %J Annals of mathematics %D 2014 %P 1051-1087 %V 180 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2014.180.3.5/ %R 10.4007/annals.2014.180.3.5 %G en %F 10_4007_annals_2014_180_3_5
Stéphane Gaussent; Guy Rousseau. Spherical Hecke algebras for Kac-Moody groups over local fields. Annals of mathematics, Tome 180 (2014) no. 3, pp. 1051-1087. doi: 10.4007/annals.2014.180.3.5
Cité par Sources :