Optimal asymptotic bounds for spherical designs
Annals of mathematics, Tome 178 (2013) no. 2, pp. 443-452
Voir la notice de l'article provenant de la source Annals of Mathematics website
In this paper we prove the conjecture of Korevaar and Meyers: for each $N\ge c_dt^d$, there exists a spherical $t$-design in the sphere $S^d$ consisting of $N$ points, where $c_d$ is a constant depending only on $d$.
DOI :
10.4007/annals.2013.178.2.2
Affiliations des auteurs :
Andriy Bondarenko 1 ; Danylo Radchenko 2 ; Maryna Viazovska 3
@article{10_4007_annals_2013_178_2_2,
author = {Andriy Bondarenko and Danylo Radchenko and Maryna Viazovska},
title = {Optimal asymptotic bounds for spherical designs},
journal = {Annals of mathematics},
pages = {443--452},
publisher = {mathdoc},
volume = {178},
number = {2},
year = {2013},
doi = {10.4007/annals.2013.178.2.2},
mrnumber = {3071504},
zbl = {1270.05026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.2.2/}
}
TY - JOUR AU - Andriy Bondarenko AU - Danylo Radchenko AU - Maryna Viazovska TI - Optimal asymptotic bounds for spherical designs JO - Annals of mathematics PY - 2013 SP - 443 EP - 452 VL - 178 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.2.2/ DO - 10.4007/annals.2013.178.2.2 LA - en ID - 10_4007_annals_2013_178_2_2 ER -
%0 Journal Article %A Andriy Bondarenko %A Danylo Radchenko %A Maryna Viazovska %T Optimal asymptotic bounds for spherical designs %J Annals of mathematics %D 2013 %P 443-452 %V 178 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.178.2.2/ %R 10.4007/annals.2013.178.2.2 %G en %F 10_4007_annals_2013_178_2_2
Andriy Bondarenko; Danylo Radchenko; Maryna Viazovska. Optimal asymptotic bounds for spherical designs. Annals of mathematics, Tome 178 (2013) no. 2, pp. 443-452. doi: 10.4007/annals.2013.178.2.2
Cité par Sources :