A counterexample to the Hirsch Conjecture
Annals of mathematics, Tome 176 (2012) no. 1, pp. 383-412
Voir la notice de l'article provenant de la source Annals of Mathematics website
The Hirsch Conjecture (1957) stated that the graph of a $d$-dimensional polytope with $n$ facets cannot have (combinatorial) diameter greater than $n-d$. That is, any two vertices of the polytope can be connected by a path of at most $n-d$ edges.
This paper presents the first counterexample to the conjecture. Our polytope has dimension $43$ and $86$ facets. It is obtained from a $5$-dimensional polytope with $48$ facets that violates a certain generalization of the $d$-step conjecture of Klee and Walkup.
@article{10_4007_annals_2012_176_1_7, author = {Francisco Santos}, title = {A counterexample to the {Hirsch} {Conjecture}}, journal = {Annals of mathematics}, pages = {383--412}, publisher = {mathdoc}, volume = {176}, number = {1}, year = {2012}, doi = {10.4007/annals.2012.176.1.7}, mrnumber = {2925387}, zbl = {1252.52007}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.7/} }
TY - JOUR AU - Francisco Santos TI - A counterexample to the Hirsch Conjecture JO - Annals of mathematics PY - 2012 SP - 383 EP - 412 VL - 176 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.7/ DO - 10.4007/annals.2012.176.1.7 LA - en ID - 10_4007_annals_2012_176_1_7 ER -
Francisco Santos. A counterexample to the Hirsch Conjecture. Annals of mathematics, Tome 176 (2012) no. 1, pp. 383-412. doi: 10.4007/annals.2012.176.1.7
Cité par Sources :