Voir la notice de l'article provenant de la source Annals of Mathematics website
We consider sequences of graphs $(G_n)$ and define various notions of convergence related to these sequences including “left-convergence,” defined in terms of the densities of homomorphisms from small graphs into $G_n$, and “right-convergence,” defined in terms of the densities of homomorphisms from $G_n$ into small graphs.
We show that right-convergence is equivalent to left-convergence, both for simple graphs $G_n$, and for graphs $G_n$ with nontrivial nodeweights and edgeweights. Other equivalent conditions for convergence are given in terms of fundamental notions from combinatorics, such as maximum cuts and Szemerédi partitions, and fundamental notions from statistical physics, like energies and free energies. We thereby relate local and global properties of graph sequences. Quantitative forms of these results express the relationships among different measures of similarity of large graphs.
Christian Borgs 1 ; Jennifer T. Chayes 1 ; László Lovász  2 ; Vera T. Sós  3 ; Katalin Vesztergombi 2
@article{10_4007_annals_2012_176_1_2,
author = {Christian Borgs and Jennifer T. Chayes and L\'aszl\'o Lov\'asz and Vera T. S\'os and Katalin Vesztergombi},
title = {Convergent sequences of dense graphs {II.} {Multiway} cuts and statistical physics},
journal = {Annals of mathematics},
pages = {151--219},
publisher = {mathdoc},
volume = {176},
number = {1},
year = {2012},
doi = {10.4007/annals.2012.176.1.2},
mrnumber = {2925382},
zbl = {1247.05124},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.2/}
}
TY - JOUR AU - Christian Borgs AU - Jennifer T. Chayes AU - László Lovász AU - Vera T. Sós AU - Katalin Vesztergombi TI - Convergent sequences of dense graphs II. Multiway cuts and statistical physics JO - Annals of mathematics PY - 2012 SP - 151 EP - 219 VL - 176 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.2/ DO - 10.4007/annals.2012.176.1.2 LA - en ID - 10_4007_annals_2012_176_1_2 ER -
%0 Journal Article %A Christian Borgs %A Jennifer T. Chayes %A László Lovász %A Vera T. Sós %A Katalin Vesztergombi %T Convergent sequences of dense graphs II. Multiway cuts and statistical physics %J Annals of mathematics %D 2012 %P 151-219 %V 176 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.176.1.2/ %R 10.4007/annals.2012.176.1.2 %G en %F 10_4007_annals_2012_176_1_2
Christian Borgs; Jennifer T. Chayes; László Lovász ; Vera T. Sós ; Katalin Vesztergombi. Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Annals of mathematics, Tome 176 (2012) no. 1, pp. 151-219. doi: 10.4007/annals.2012.176.1.2
Cité par Sources :