Thom polynomials of Morin singularities
Annals of mathematics, Tome 175 (2012) no. 2, pp. 567-629
Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove a formula for Thom polynomials of $A_d$ singularities in any codimension. We use a combination of the test-curve model of Porteous, and the localization methods in equivariant cohomology. Our formulas are independent of the codimension, and are computationally effective up to $d=6$.
DOI :
10.4007/annals.2012.175.2.4
Affiliations des auteurs :
Gergely Bérczi  1 ; András Szenes 2
@article{10_4007_annals_2012_175_2_4, author = {Gergely B\'erczi and Andr\'as Szenes}, title = {Thom polynomials of {Morin} singularities}, journal = {Annals of mathematics}, pages = {567--629}, publisher = {mathdoc}, volume = {175}, number = {2}, year = {2012}, doi = {10.4007/annals.2012.175.2.4}, mrnumber = {2877067}, zbl = {1247.58021}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.4/} }
TY - JOUR AU - Gergely Bérczi AU - András Szenes TI - Thom polynomials of Morin singularities JO - Annals of mathematics PY - 2012 SP - 567 EP - 629 VL - 175 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2012.175.2.4/ DO - 10.4007/annals.2012.175.2.4 LA - en ID - 10_4007_annals_2012_175_2_4 ER -
Gergely Bérczi ; András Szenes. Thom polynomials of Morin singularities. Annals of mathematics, Tome 175 (2012) no. 2, pp. 567-629. doi: 10.4007/annals.2012.175.2.4
Cité par Sources :