Canonical subgroups of Barsotti-Tate groups
Annals of mathematics, Tome 172 (2010) no. 2, pp. 955-988
Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $S$ be the spectrum of a complete discrete valuation ring with fraction field of characteristic $0$ and perfect residue field of characteristic $p\geq 3$. Let $G$ be a truncated Barsotti-Tate group of level $1$ over $S$. If “$G$ is not too supersingular”, a condition that will be explicitly expressed in terms of the valuation of a certain determinant, then we prove that we can canonically lift the kernel of the Frobenius endomorphism of its special fiber to a subgroup scheme of $G$, finite and flat over $S$. We call it the canonical subgroup of $G$.
@article{10_4007_annals_2010_172_955,
author = {Yichao Tian},
title = {Canonical subgroups of {Barsotti-Tate} groups},
journal = {Annals of mathematics},
pages = {955--988},
publisher = {mathdoc},
volume = {172},
number = {2},
year = {2010},
doi = {10.4007/annals.2010.172.955},
mrnumber = {2680485
},
zbl = {1203.14026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.955/}
}
TY - JOUR AU - Yichao Tian TI - Canonical subgroups of Barsotti-Tate groups JO - Annals of mathematics PY - 2010 SP - 955 EP - 988 VL - 172 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.955/ DO - 10.4007/annals.2010.172.955 LA - en ID - 10_4007_annals_2010_172_955 ER -
Yichao Tian. Canonical subgroups of Barsotti-Tate groups. Annals of mathematics, Tome 172 (2010) no. 2, pp. 955-988. doi: 10.4007/annals.2010.172.955
Cité par Sources :