Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove that the normalizer of any diffuse amenable subalgebra of a free group factor $L(\mathbb{F}_r)$ generates an amenable von Neumann subalgebra. Moreover, any ${\rm II}_1$ factor of the form $Q \bar{\otimes} L(\mathbb{F}_r) $, with $Q$ an arbitrary subfactor of a tensor product of free group factors, has no Cartan subalgebras. We also prove that if a free ergodic measure-preserving action of a free group $\mathbb{F}_r$, $2\leq r \leq \infty$, on a probability space $(X,\mu)$ is profinite then the group measure space factor $L^\infty(X) \rtimes \mathbb{F}_r$ has unique Cartan subalgebra, up to unitary conjugacy.
Narutaka Ozawa 1 ; Sorin Popa 2
@article{10_4007_annals_2010_172_713, author = {Narutaka Ozawa and Sorin Popa}, title = {On a class of $\mathrm{II}_1$ factors with at most one {Cartan} subalgebra}, journal = {Annals of mathematics}, pages = {713--749}, publisher = {mathdoc}, volume = {172}, number = {1}, year = {2010}, doi = {10.4007/annals.2010.172.713}, mrnumber = {2680430}, zbl = {1201.46054}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.713/} }
TY - JOUR AU - Narutaka Ozawa AU - Sorin Popa TI - On a class of $\mathrm{II}_1$ factors with at most one Cartan subalgebra JO - Annals of mathematics PY - 2010 SP - 713 EP - 749 VL - 172 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.713/ DO - 10.4007/annals.2010.172.713 LA - en ID - 10_4007_annals_2010_172_713 ER -
%0 Journal Article %A Narutaka Ozawa %A Sorin Popa %T On a class of $\mathrm{II}_1$ factors with at most one Cartan subalgebra %J Annals of mathematics %D 2010 %P 713-749 %V 172 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.713/ %R 10.4007/annals.2010.172.713 %G en %F 10_4007_annals_2010_172_713
Narutaka Ozawa; Sorin Popa. On a class of $\mathrm{II}_1$ factors with at most one Cartan subalgebra. Annals of mathematics, Tome 172 (2010) no. 1, pp. 713-749. doi: 10.4007/annals.2010.172.713
Cité par Sources :