Voir la notice de l'article provenant de la source Annals of Mathematics website
For $d\ge 3$, we construct a non-randomized, fair, and translation-equivariant allocation of Lebesgue measure to the points of a standard Poisson point process in $\mathbb{R}^d$, defined by allocating to each of the Poisson points its basin of attraction with respect to the flow induced by a gravitational force field exerted by the points of the Poisson process. We prove that this allocation rule is economical in the sense that the allocation diameter, defined as the diameter $X$ of the basin of attraction containing the origin, is a random variable with a rapidly decaying tail. Specifically, we have the tail bound \[\mathbb{P}(X > R) \le C \operatorname{exp}\big[-c R (\log R)^{\alpha_d} \big]\] for all $R>2$, where: $\alpha_d = \frac{d-2}{d}$ for $d\ge 4$; $\alpha_3$ can be taken as any number less than $-4/3$; and $C$ and $c$ are positive constants that depend on $d$ and $\alpha_d$. This is the first construction of an allocation rule of Lebesgue measure to a Poisson point process with subpolynomial decay of the tail $\mathbb{P}(X>R)$.
Sourav Chatterjee 1 ; Ron Peled 2 ; Yuval Peres 3 ; Dan Romik 4
@article{10_4007_annals_2010_172_617, author = {Sourav Chatterjee and Ron Peled and Yuval Peres and Dan Romik}, title = {Gravitational allocation to {Poisson} points}, journal = {Annals of mathematics}, pages = {617--671}, publisher = {mathdoc}, volume = {172}, number = {1}, year = {2010}, doi = {10.4007/annals.2010.172.617}, mrnumber = {2680428}, zbl = {1206.60013}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.617/} }
TY - JOUR AU - Sourav Chatterjee AU - Ron Peled AU - Yuval Peres AU - Dan Romik TI - Gravitational allocation to Poisson points JO - Annals of mathematics PY - 2010 SP - 617 EP - 671 VL - 172 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.617/ DO - 10.4007/annals.2010.172.617 LA - en ID - 10_4007_annals_2010_172_617 ER -
%0 Journal Article %A Sourav Chatterjee %A Ron Peled %A Yuval Peres %A Dan Romik %T Gravitational allocation to Poisson points %J Annals of mathematics %D 2010 %P 617-671 %V 172 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.617/ %R 10.4007/annals.2010.172.617 %G en %F 10_4007_annals_2010_172_617
Sourav Chatterjee; Ron Peled; Yuval Peres; Dan Romik. Gravitational allocation to Poisson points. Annals of mathematics, Tome 172 (2010) no. 1, pp. 617-671. doi: 10.4007/annals.2010.172.617
Cité par Sources :