Center conditions at infinity for Abel differential equations
Annals of mathematics, Tome 172 (2010) no. 1, pp. 437-483
Voir la notice de l'article provenant de la source Annals of Mathematics website
An Abel differential equation $y’=p(x)y^2 + q(x) y^3$ is said to have a center at a set $A=\{a_1,\dots,a_r\}$ of complex numbers if $y(a_1)=y(a_2)=\dots=y(a_r)$ for any solution $y(x)$ (with the initial value $y(a_1)$ small enough).
DOI :
10.4007/annals.2010.172.437
Affiliations des auteurs :
Miriam Briskin 1 ; Nina Roytvarf 2 ; Yosef Yomdin 3
@article{10_4007_annals_2010_172_437, author = {Miriam Briskin and Nina Roytvarf and Yosef Yomdin}, title = {Center conditions at infinity for {Abel} differential equations}, journal = {Annals of mathematics}, pages = {437--483}, publisher = {mathdoc}, volume = {172}, number = {1}, year = {2010}, doi = {10.4007/annals.2010.172.437}, mrnumber = {2680423}, zbl = {1216.34025}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.437/} }
TY - JOUR AU - Miriam Briskin AU - Nina Roytvarf AU - Yosef Yomdin TI - Center conditions at infinity for Abel differential equations JO - Annals of mathematics PY - 2010 SP - 437 EP - 483 VL - 172 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.437/ DO - 10.4007/annals.2010.172.437 LA - en ID - 10_4007_annals_2010_172_437 ER -
%0 Journal Article %A Miriam Briskin %A Nina Roytvarf %A Yosef Yomdin %T Center conditions at infinity for Abel differential equations %J Annals of mathematics %D 2010 %P 437-483 %V 172 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.437/ %R 10.4007/annals.2010.172.437 %G en %F 10_4007_annals_2010_172_437
Miriam Briskin; Nina Roytvarf; Yosef Yomdin. Center conditions at infinity for Abel differential equations. Annals of mathematics, Tome 172 (2010) no. 1, pp. 437-483. doi: 10.4007/annals.2010.172.437
Cité par Sources :