The Iwasawa $\mu$-invariant of $p$-adic Hecke $L$-functions
Annals of mathematics, Tome 172 (2010) no. 1, pp. 41-137
Voir la notice de l'article provenant de la source Annals of Mathematics website
For an odd prime $p$, we compute the $\mu$-invariant of the anticyclotomic Katz $p$-adic $L$-function of a $p$-ordinary CM field if the conductor of the branch character is a product of primes split over the maximal real subfield. Except for rare cases where the root number of the $p$-adic functional equation is congruent to $-1$ modulo $p$, the invariant vanishes.
@article{10_4007_annals_2010_172_41,
author = {Haruzo Hida},
title = {The {Iwasawa} $\mu$-invariant of $p$-adic {Hecke} $L$-functions},
journal = {Annals of mathematics},
pages = {41--137},
publisher = {mathdoc},
volume = {172},
number = {1},
year = {2010},
doi = {10.4007/annals.2010.172.41},
mrnumber = {2680417},
zbl = {1223.11131},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.41/}
}
TY - JOUR AU - Haruzo Hida TI - The Iwasawa $\mu$-invariant of $p$-adic Hecke $L$-functions JO - Annals of mathematics PY - 2010 SP - 41 EP - 137 VL - 172 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.41/ DO - 10.4007/annals.2010.172.41 LA - en ID - 10_4007_annals_2010_172_41 ER -
Haruzo Hida. The Iwasawa $\mu$-invariant of $p$-adic Hecke $L$-functions. Annals of mathematics, Tome 172 (2010) no. 1, pp. 41-137. doi: 10.4007/annals.2010.172.41
Cité par Sources :