Voir la notice de l'article provenant de la source Annals of Mathematics website
We give estimates on the number $\operatorname{AL}_H(x)$ of conjugacy classes of arithmetic lattices $\Gamma$ of covolume at most $x$ in a simple Lie group $H$. In particular, we obtain a first concrete estimate on the number of arithmetic $3$-manifolds of volume at most $x$. Our main result is for the classical case $H=\operatorname{PSL}(2,\mathbb{R})$ where we show that \[ \lim_{x\to\infty}\frac{\log \operatorname{AL}_H(x)}{x\log x}=\frac{1}{2\pi}. \] The proofs use several different techniques: geometric (bounding the number of generators of $\Gamma$ as a function of its covolume), number theoretic (bounding the number of maximal such $\Gamma$) and sharp estimates on the character values of the symmetric groups (to bound the subgroup growth of $\Gamma$).
Mikhail Belolipetsky 1 ; Tsachik Gelander 2 ; Alexander Lubotzky 3 ; Aner Shalev 3
@article{10_4007_annals_2010_172_2197,
author = {Mikhail Belolipetsky and Tsachik Gelander and Alexander Lubotzky and Aner Shalev},
title = {Counting arithmetic lattices and surfaces},
journal = {Annals of mathematics},
pages = {2197--2221},
publisher = {mathdoc},
volume = {172},
number = {3},
year = {2010},
doi = {10.4007/annals.2010.172.2197},
mrnumber = {2726109
},
zbl = {1214.22002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.2197/}
}
TY - JOUR AU - Mikhail Belolipetsky AU - Tsachik Gelander AU - Alexander Lubotzky AU - Aner Shalev TI - Counting arithmetic lattices and surfaces JO - Annals of mathematics PY - 2010 SP - 2197 EP - 2221 VL - 172 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.2197/ DO - 10.4007/annals.2010.172.2197 LA - en ID - 10_4007_annals_2010_172_2197 ER -
%0 Journal Article %A Mikhail Belolipetsky %A Tsachik Gelander %A Alexander Lubotzky %A Aner Shalev %T Counting arithmetic lattices and surfaces %J Annals of mathematics %D 2010 %P 2197-2221 %V 172 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.2197/ %R 10.4007/annals.2010.172.2197 %G en %F 10_4007_annals_2010_172_2197
Mikhail Belolipetsky; Tsachik Gelander; Alexander Lubotzky; Aner Shalev. Counting arithmetic lattices and surfaces. Annals of mathematics, Tome 172 (2010) no. 3, pp. 2197-2221. doi: 10.4007/annals.2010.172.2197
Cité par Sources :