Voir la notice de l'article provenant de la source Annals of Mathematics website
The periodic Lorentz gas describes the dynamics of a point particle in a periodic array of spherical scatterers, and is one of the fundamental models for chaotic diffusion. In the present paper we investigate the Boltzmann-Grad limit, where the radius of each scatterer tends to zero, and prove the existence of a limiting distribution for the free path length. We also discuss related problems, such as the statistical distribution of directions of lattice points that are visible from a fixed position.
Jens Marklof 1 ; Andreas Strömbergsson  2
@article{10_4007_annals_2010_172_1949, author = {Jens Marklof and Andreas Str\"ombergsson }, title = {The distribution of free path lengths in the periodic {Lorentz} gas and related lattice point problems}, journal = {Annals of mathematics}, pages = {1949--2033}, publisher = {mathdoc}, volume = {172}, number = {3}, year = {2010}, doi = {10.4007/annals.2010.172.1949}, mrnumber = {2726104}, zbl = {1211.82011}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1949/} }
TY - JOUR AU - Jens Marklof AU - Andreas Strömbergsson TI - The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems JO - Annals of mathematics PY - 2010 SP - 1949 EP - 2033 VL - 172 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1949/ DO - 10.4007/annals.2010.172.1949 LA - en ID - 10_4007_annals_2010_172_1949 ER -
%0 Journal Article %A Jens Marklof %A Andreas Strömbergsson %T The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems %J Annals of mathematics %D 2010 %P 1949-2033 %V 172 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1949/ %R 10.4007/annals.2010.172.1949 %G en %F 10_4007_annals_2010_172_1949
Jens Marklof; Andreas Strömbergsson . The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems. Annals of mathematics, Tome 172 (2010) no. 3, pp. 1949-2033. doi: 10.4007/annals.2010.172.1949
Cité par Sources :