Local rigidity of partially hyperbolic actions I. KAM method and ${\mathbb Z^k}$ actions on the torus
Annals of mathematics, Tome 172 (2010) no. 3, pp. 1805-1858
Voir la notice de l'article provenant de la source Annals of Mathematics website
We show $\Bbb C^\infty$ local rigidity for $\mathbb{Z}^k$ $(k\ge 2)$ higher rank partially hyperbolic actions by toral automorphisms, using a generalization of the KAM (Kolmogorov-Arnold-Moser) iterative scheme. We also prove the existence of irreducible genuinely partially hyperbolic higher rank actions on any torus $\mathbb{T}^N$ for any even $N\ge 6$.
DOI :
10.4007/annals.2010.172.1805
Affiliations des auteurs :
Danijela Damjanović  1 ; Anatole Katok 2
@article{10_4007_annals_2010_172_1805, author = {Danijela Damjanovi\'c and Anatole Katok}, title = {Local rigidity of partially hyperbolic actions {I.} {KAM} method and ${\mathbb Z^k}$ actions on the torus}, journal = {Annals of mathematics}, pages = {1805--1858}, publisher = {mathdoc}, volume = {172}, number = {3}, year = {2010}, doi = {10.4007/annals.2010.172.1805}, mrnumber = {2726100 }, zbl = {1209.37017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1805/} }
TY - JOUR AU - Danijela Damjanović AU - Anatole Katok TI - Local rigidity of partially hyperbolic actions I. KAM method and ${\mathbb Z^k}$ actions on the torus JO - Annals of mathematics PY - 2010 SP - 1805 EP - 1858 VL - 172 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1805/ DO - 10.4007/annals.2010.172.1805 LA - en ID - 10_4007_annals_2010_172_1805 ER -
%0 Journal Article %A Danijela Damjanović %A Anatole Katok %T Local rigidity of partially hyperbolic actions I. KAM method and ${\mathbb Z^k}$ actions on the torus %J Annals of mathematics %D 2010 %P 1805-1858 %V 172 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1805/ %R 10.4007/annals.2010.172.1805 %G en %F 10_4007_annals_2010_172_1805
Danijela Damjanović ; Anatole Katok. Local rigidity of partially hyperbolic actions I. KAM method and ${\mathbb Z^k}$ actions on the torus. Annals of mathematics, Tome 172 (2010) no. 3, pp. 1805-1858. doi: 10.4007/annals.2010.172.1805
Cité par Sources :