Voir la notice de l'article provenant de la source Annals of Mathematics website
Let ${\rm Sym}_3\, \mathbf{C} \longrightarrow \mathbf{P}_*(k \oplus {\rm Sym}_3\,k \oplus {\rm Sym}_3\,k \oplus k) = {\bf P}^{13}, A \mapsto (1: A: A’: \det A) $ be the Veronese embedding of the space of symmetric matrices of degree 3, where $A’$ is the cofactor matrix of $A$. The closure $\operatorname{SpG}(3, 6)$ of this image is a 6-dimensional homogeneous variety of the symplectic group $\operatorname{Sp}(3)$. A canonical curve $C_{16} \subset {\bf P}^8$ of genus 9 over a perfect field $k$ is isomorphic to a complete linear section of this projective variety $\operatorname{SpG}(3, 6) \subset {\bf P}^{13}$ unless $C \otimes_k \bar k$, $\bar k$ being the algebraic closure, is a covering of degree at most 5 of the projective line. We prove this by means of linear systems of higher rank.
@article{10_4007_annals_2010_172_1539, author = {Shigeru Mukai}, title = {Curves and symmetric spaces, {II}}, journal = {Annals of mathematics}, pages = {1539--1558}, publisher = {mathdoc}, volume = {172}, number = {3}, year = {2010}, doi = {10.4007/annals.2010.172.1539}, mrnumber = {2726093}, zbl = {1210.14034}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1539/} }
TY - JOUR AU - Shigeru Mukai TI - Curves and symmetric spaces, II JO - Annals of mathematics PY - 2010 SP - 1539 EP - 1558 VL - 172 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1539/ DO - 10.4007/annals.2010.172.1539 LA - en ID - 10_4007_annals_2010_172_1539 ER -
Shigeru Mukai. Curves and symmetric spaces, II. Annals of mathematics, Tome 172 (2010) no. 3, pp. 1539-1558. doi: 10.4007/annals.2010.172.1539
Cité par Sources :