Voir la notice de l'article provenant de la source Annals of Mathematics website
In the local, characteristic $0$, non-Archimedean case, we consider distributions on ${\rm GL}(n+1)$ which are invariant under the adjoint action of ${\rm GL}(n)$. We prove that such distributions are invariant by transposition. This implies multiplicity at most one for restrictions from ${\rm GL}(n+1)$ to ${\rm GL}(n)$. Similar theorems are obtained for orthogonal or unitary groups.
Avraham Aizenbud 1 ; Dmitry Gourevitch 2 ; Stephen Rallis 3 ; Gérard Schiffmann 4
@article{10_4007_annals_2010_172_1407,
author = {Avraham Aizenbud and Dmitry Gourevitch and Stephen Rallis and G\'erard Schiffmann},
title = {Multiplicity one theorems},
journal = {Annals of mathematics},
pages = {1407--1434},
publisher = {mathdoc},
volume = {172},
number = {2},
year = {2010},
doi = {10.4007/annals.2010.172.1407},
mrnumber = {2680495},
zbl = {1202.22012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1407/}
}
TY - JOUR AU - Avraham Aizenbud AU - Dmitry Gourevitch AU - Stephen Rallis AU - Gérard Schiffmann TI - Multiplicity one theorems JO - Annals of mathematics PY - 2010 SP - 1407 EP - 1434 VL - 172 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1407/ DO - 10.4007/annals.2010.172.1407 LA - en ID - 10_4007_annals_2010_172_1407 ER -
%0 Journal Article %A Avraham Aizenbud %A Dmitry Gourevitch %A Stephen Rallis %A Gérard Schiffmann %T Multiplicity one theorems %J Annals of mathematics %D 2010 %P 1407-1434 %V 172 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2010.172.1407/ %R 10.4007/annals.2010.172.1407 %G en %F 10_4007_annals_2010_172_1407
Avraham Aizenbud; Dmitry Gourevitch; Stephen Rallis; Gérard Schiffmann. Multiplicity one theorems. Annals of mathematics, Tome 172 (2010) no. 2, pp. 1407-1434. doi: 10.4007/annals.2010.172.1407
Cité par Sources :