Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $(W,S)$ be a crystallographic Coxeter group (this includes all finite and affine Weyl groups), and let $J\subseteq S$. Let $W^J$ denote the set of minimal coset representatives modulo the parabolic subgroup $W_J$. For $w\in W^J$, let $f^{w\smash{,J}}_{i}$ denote the number of elements of length $i$ below $w$ in Bruhat order on $W^J$ (with notation simplified to $f^{w}_{i}$ in the case when $W^J=W$). We show that $$ 0\le i\lt j\le \ell (w)-i \quad\hbox{implies}\quad f^{w\smash{,J}}_{i} \le f^{w\smash{,J}}_{j}. \end{displaymath} Also, the case of equalities $\smashf^w_i = f^w_\ell(w)-i$ for $i=1, \ldots,k$ is characterized in terms of vanishing of coefficients in the Kazhdan-Lusztig polynomial $P_e,w(q)$.
Anders Björner  1 ; Torsten Ekedahl 2
@article{10_4007_annals_2009_170_799,
author = {Anders Bj\"orner and Torsten Ekedahl},
title = {On the shape of {Bruhat} intervals},
journal = {Annals of mathematics},
pages = {799--817},
publisher = {mathdoc},
volume = {170},
number = {2},
year = {2009},
doi = {10.4007/annals.2009.170.799},
mrnumber = {2552108},
zbl = {1226.05268},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.799/}
}
TY - JOUR AU - Anders Björner AU - Torsten Ekedahl TI - On the shape of Bruhat intervals JO - Annals of mathematics PY - 2009 SP - 799 EP - 817 VL - 170 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.799/ DO - 10.4007/annals.2009.170.799 LA - en ID - 10_4007_annals_2009_170_799 ER -
Anders Björner ; Torsten Ekedahl. On the shape of Bruhat intervals. Annals of mathematics, Tome 170 (2009) no. 2, pp. 799-817. doi: 10.4007/annals.2009.170.799
Cité par Sources :