Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove that any unicritical polynomial $f_c:z\mapsto z^d+c$ which is at most finitely renormalizable and has only repelling periodic points is combinatorially rigid. This implies that the connectedness locus (the “Multibrot set”) is locally connected at the corresponding parameter values and generalizes Yoccoz’s Theorem for quadratics to the higher degree case.
Artur Avila 1 ; Jeremy Kahn 2 ; Mikhail Lyubich 3 ; Weixiao Shen 4
@article{10_4007_annals_2009_170_783,
author = {Artur Avila and Jeremy Kahn and Mikhail Lyubich and Weixiao Shen},
title = {Combinatorial rigidity for unicritical polynomials},
journal = {Annals of mathematics},
pages = {783--797},
publisher = {mathdoc},
volume = {170},
number = {2},
year = {2009},
doi = {10.4007/annals.2009.170.783},
mrnumber = {2552107},
zbl = {1204.37047},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.783/}
}
TY - JOUR AU - Artur Avila AU - Jeremy Kahn AU - Mikhail Lyubich AU - Weixiao Shen TI - Combinatorial rigidity for unicritical polynomials JO - Annals of mathematics PY - 2009 SP - 783 EP - 797 VL - 170 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.783/ DO - 10.4007/annals.2009.170.783 LA - en ID - 10_4007_annals_2009_170_783 ER -
%0 Journal Article %A Artur Avila %A Jeremy Kahn %A Mikhail Lyubich %A Weixiao Shen %T Combinatorial rigidity for unicritical polynomials %J Annals of mathematics %D 2009 %P 783-797 %V 170 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.783/ %R 10.4007/annals.2009.170.783 %G en %F 10_4007_annals_2009_170_783
Artur Avila; Jeremy Kahn; Mikhail Lyubich; Weixiao Shen. Combinatorial rigidity for unicritical polynomials. Annals of mathematics, Tome 170 (2009) no. 2, pp. 783-797. doi: 10.4007/annals.2009.170.783
Cité par Sources :