Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $J$ be a semisimple Lie group with all simple factors of real rank at least two. Let $\Gamma\lt J$ be a lattice. We prove a very general local rigidity result about actions of $J$ or $\Gamma$. This shows that almost all so-called “standard actions” are locally rigid. As a special case, we see that any action of $\Gamma$ by toral automorphisms is locally rigid. More generally, given a manifold $M$ on which $\Gamma$ acts isometrically and a torus $\mathbb T^n$ on which it acts by automorphisms, we show that the diagonal action on $\mathbb T^n{\times}M$ is locally rigid.
David Fisher 1 ; Gregory Margulis 2
@article{10_4007_annals_2009_170_67, author = {David Fisher and Gregory Margulis}, title = {Local rigidity of affine actions of higher rank groups and lattices}, journal = {Annals of mathematics}, pages = {67--122}, publisher = {mathdoc}, volume = {170}, number = {1}, year = {2009}, doi = {10.4007/annals.2009.170.67}, mrnumber = {2521112}, zbl = {1186.22015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.67/} }
TY - JOUR AU - David Fisher AU - Gregory Margulis TI - Local rigidity of affine actions of higher rank groups and lattices JO - Annals of mathematics PY - 2009 SP - 67 EP - 122 VL - 170 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.67/ DO - 10.4007/annals.2009.170.67 LA - en ID - 10_4007_annals_2009_170_67 ER -
%0 Journal Article %A David Fisher %A Gregory Margulis %T Local rigidity of affine actions of higher rank groups and lattices %J Annals of mathematics %D 2009 %P 67-122 %V 170 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.67/ %R 10.4007/annals.2009.170.67 %G en %F 10_4007_annals_2009_170_67
David Fisher; Gregory Margulis. Local rigidity of affine actions of higher rank groups and lattices. Annals of mathematics, Tome 170 (2009) no. 1, pp. 67-122. doi: 10.4007/annals.2009.170.67
Cité par Sources :