Voir la notice de l'article provenant de la source Annals of Mathematics website
We identify the two minimal co-volume lattices of the isometry group of hyperbolic $3$-space that contain a finite spherical triangle group. These two groups are arithmetic and are in fact the two minimal co-volume lattices. Our results here represent the key step in establishing this fact, thereby solving a problem posed by Siegel in 1945. As a consequence we obtain sharp bounds on the order of the symmetry group of a hyperbolic $3$-manifold in terms of its volume, analogous to the Hurwitz $84g-84$ theorem of 1892.
Frederick W. Gehring 1 ; Gaven J. Martin 2
@article{10_4007_annals_2009_170_123,
author = {Frederick W. Gehring and Gaven J. Martin},
title = {Minimal co-volume hyperbolic lattices, {I:} {The} spherical points of a {Kleinian} group},
journal = {Annals of mathematics},
pages = {123--161},
publisher = {mathdoc},
volume = {170},
number = {1},
year = {2009},
doi = {10.4007/annals.2009.170.123},
mrnumber = {2521113},
zbl = {1171.30014},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.123/}
}
TY - JOUR AU - Frederick W. Gehring AU - Gaven J. Martin TI - Minimal co-volume hyperbolic lattices, I: The spherical points of a Kleinian group JO - Annals of mathematics PY - 2009 SP - 123 EP - 161 VL - 170 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.123/ DO - 10.4007/annals.2009.170.123 LA - en ID - 10_4007_annals_2009_170_123 ER -
%0 Journal Article %A Frederick W. Gehring %A Gaven J. Martin %T Minimal co-volume hyperbolic lattices, I: The spherical points of a Kleinian group %J Annals of mathematics %D 2009 %P 123-161 %V 170 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.123/ %R 10.4007/annals.2009.170.123 %G en %F 10_4007_annals_2009_170_123
Frederick W. Gehring; Gaven J. Martin. Minimal co-volume hyperbolic lattices, I: The spherical points of a Kleinian group. Annals of mathematics, Tome 170 (2009) no. 1, pp. 123-161. doi: 10.4007/annals.2009.170.123
Cité par Sources :