Proper affine actions and geodesic flows of hyperbolic surfaces
Annals of mathematics, Tome 170 (2009) no. 3, pp. 1051-1083

Voir la notice de l'article provenant de la source Annals of Mathematics website

Let $\Gamma_0\subset\mathsf{O}(2,1)$ be a Schottky group, and let $\Sigma=\mathsf{H}^2/\Gamma_0$ be the corresponding hyperbolic surface. Let $\mathcal{C}(\Sigma)$ denote the space of unit length geodesic currents on $\Sigma$. The cohomology group $H^1(\Gamma_0,\mathsf{V})$ parametrizes equivalence classes of affine deformations $\Gamma_{\mathsf u}$ of $\Gamma_0$ acting on an irreducible representation $\mathsf{V}$ of $\mathsf{O}(2,1)$. We define a continuous biaffine map $\Psi: \mathcal{C}(\Sigma) \times H^1(\Gamma_0,\mathsf{V}) \rightarrow\mathbb{R} $ which is linear on the vector space $H^1(\Gamma_0,\mathsf{V})$. An affine deformation $\Gamma_{\mathsf u}$ acts properly if and only if $\Psi(\mu,[\mathsf{u}])\neq 0$ for all $\mu\in\mathcal{C}(\Sigma)$. Consequently the set of proper affine actions whose linear part is a Schottky group identifies with a bundle of open convex cones in $H^1(\Gamma_0,\mathsf{V})$ over the Fricke-Teichmüller space of $\Sigma$.

DOI : 10.4007/annals.2009.170.1051

William M. Goldman 1 ; François Labourie 2 ; Gregory Margulis 3

1 Department of Mathematics<br/>University of Maryland<br/>College Park, MD 20742<br/>United States
2 Topologie et Dynamique<br/>Université Paris-Sud<br/>F-91405 Orsay (Cedex)<br/>France
3 Department of Mathematics<br/>Yale University<br/>10 Hillhouse Ave.<br/>P.O. Box 208283<br/>New Haven, CT 06520<br/>United States
@article{10_4007_annals_2009_170_1051,
     author = {William M. Goldman and Fran\c{c}ois Labourie and Gregory Margulis},
     title = {Proper affine actions and geodesic flows of hyperbolic surfaces},
     journal = {Annals of mathematics},
     pages = {1051--1083},
     publisher = {mathdoc},
     volume = {170},
     number = {3},
     year = {2009},
     doi = {10.4007/annals.2009.170.1051},
     mrnumber = {2600870},
     zbl = {1193.57001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1051/}
}
TY  - JOUR
AU  - William M. Goldman
AU  - François Labourie
AU  - Gregory Margulis
TI  - Proper affine actions and geodesic flows of hyperbolic surfaces
JO  - Annals of mathematics
PY  - 2009
SP  - 1051
EP  - 1083
VL  - 170
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1051/
DO  - 10.4007/annals.2009.170.1051
LA  - en
ID  - 10_4007_annals_2009_170_1051
ER  - 
%0 Journal Article
%A William M. Goldman
%A François Labourie
%A Gregory Margulis
%T Proper affine actions and geodesic flows of hyperbolic surfaces
%J Annals of mathematics
%D 2009
%P 1051-1083
%V 170
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1051/
%R 10.4007/annals.2009.170.1051
%G en
%F 10_4007_annals_2009_170_1051
William M. Goldman; François Labourie; Gregory Margulis. Proper affine actions and geodesic flows of hyperbolic surfaces. Annals of mathematics, Tome 170 (2009) no. 3, pp. 1051-1083. doi: 10.4007/annals.2009.170.1051

Cité par Sources :