Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $\Gamma_0\subset\mathsf{O}(2,1)$ be a Schottky group, and let $\Sigma=\mathsf{H}^2/\Gamma_0$ be the corresponding hyperbolic surface. Let $\mathcal{C}(\Sigma)$ denote the space of unit length geodesic currents on $\Sigma$. The cohomology group $H^1(\Gamma_0,\mathsf{V})$ parametrizes equivalence classes of affine deformations $\Gamma_{\mathsf u}$ of $\Gamma_0$ acting on an irreducible representation $\mathsf{V}$ of $\mathsf{O}(2,1)$. We define a continuous biaffine map $\Psi: \mathcal{C}(\Sigma) \times H^1(\Gamma_0,\mathsf{V}) \rightarrow\mathbb{R} $ which is linear on the vector space $H^1(\Gamma_0,\mathsf{V})$. An affine deformation $\Gamma_{\mathsf u}$ acts properly if and only if $\Psi(\mu,[\mathsf{u}])\neq 0$ for all $\mu\in\mathcal{C}(\Sigma)$. Consequently the set of proper affine actions whose linear part is a Schottky group identifies with a bundle of open convex cones in $H^1(\Gamma_0,\mathsf{V})$ over the Fricke-Teichmüller space of $\Sigma$.
William M. Goldman 1 ; François Labourie 2 ; Gregory Margulis 3
@article{10_4007_annals_2009_170_1051, author = {William M. Goldman and Fran\c{c}ois Labourie and Gregory Margulis}, title = {Proper affine actions and geodesic flows of hyperbolic surfaces}, journal = {Annals of mathematics}, pages = {1051--1083}, publisher = {mathdoc}, volume = {170}, number = {3}, year = {2009}, doi = {10.4007/annals.2009.170.1051}, mrnumber = {2600870}, zbl = {1193.57001}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1051/} }
TY - JOUR AU - William M. Goldman AU - François Labourie AU - Gregory Margulis TI - Proper affine actions and geodesic flows of hyperbolic surfaces JO - Annals of mathematics PY - 2009 SP - 1051 EP - 1083 VL - 170 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1051/ DO - 10.4007/annals.2009.170.1051 LA - en ID - 10_4007_annals_2009_170_1051 ER -
%0 Journal Article %A William M. Goldman %A François Labourie %A Gregory Margulis %T Proper affine actions and geodesic flows of hyperbolic surfaces %J Annals of mathematics %D 2009 %P 1051-1083 %V 170 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1051/ %R 10.4007/annals.2009.170.1051 %G en %F 10_4007_annals_2009_170_1051
William M. Goldman; François Labourie; Gregory Margulis. Proper affine actions and geodesic flows of hyperbolic surfaces. Annals of mathematics, Tome 170 (2009) no. 3, pp. 1051-1083. doi: 10.4007/annals.2009.170.1051
Cité par Sources :