Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $X$ be a compact Riemann surface of genus $g_{X}\geq1$. In 1984, G. Faltings introduced a new invariant $\delta_{\operatorname{Fal}}(X)$ associated to $X$. In this paper we give explicit bounds for $\delta_{\operatorname{Fal}}(X)$ in terms of fundamental differential geometric invariants arising from $X$, when $g_{X}>1$. As an application, we are able to give bounds for Faltings’s delta function for the family of modular curves $X_{0}(N)$ in terms of the genus only. In combination with work of A. Abbes, P. Michel and E. Ullmo, this leads to an asymptotic formula for the Faltings height of the Jacobian $J_{0}(N)$ associated to $X_{0}(N)$.
Jay Jorgenson 1 ; Jürg Kramer 2
@article{10_4007_annals_2009_170_1, author = {Jay Jorgenson and J\"urg Kramer}, title = {Bounds on {Faltings{\textquoteright}s} delta function through covers}, journal = {Annals of mathematics}, pages = {1--43}, publisher = {mathdoc}, volume = {170}, number = {1}, year = {2009}, doi = {10.4007/annals.2009.170.1}, mrnumber = {2521110}, zbl = {1169.14020}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1/} }
TY - JOUR AU - Jay Jorgenson AU - Jürg Kramer TI - Bounds on Faltings’s delta function through covers JO - Annals of mathematics PY - 2009 SP - 1 EP - 43 VL - 170 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1/ DO - 10.4007/annals.2009.170.1 LA - en ID - 10_4007_annals_2009_170_1 ER -
Jay Jorgenson; Jürg Kramer. Bounds on Faltings’s delta function through covers. Annals of mathematics, Tome 170 (2009) no. 1, pp. 1-43. doi: 10.4007/annals.2009.170.1
Cité par Sources :