Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(F_p)$
Annals of mathematics, Tome 167 (2008) no. 2, pp. 625-642
Voir la notice de l'article provenant de la source Annals of Mathematics website
We prove that Cayley graphs of $\mathrm{SL}_2(\mathbb{F}_p)$ are expanders with respect to the projection of any fixed elements in $\mathrm{SL}(2, \mathbb{Z})$ generating a non-elementary subgroup, and with respect to generators chosen at random in $\mathrm{SL}_2(\mathbb{F}_p)$.
DOI :
10.4007/annals.2008.167.625
Affiliations des auteurs :
Jean Bourgain 1 ; Alex Gamburd 2
@article{10_4007_annals_2008_167_625,
author = {Jean Bourgain and Alex Gamburd},
title = {Uniform expansion bounds for {Cayley} graphs of $\mathrm{SL}_2(F_p)$},
journal = {Annals of mathematics},
pages = {625--642},
publisher = {mathdoc},
volume = {167},
number = {2},
year = {2008},
doi = {10.4007/annals.2008.167.625},
mrnumber = {2415383},
zbl = {1216.20042},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.625/}
}
TY - JOUR
AU - Jean Bourgain
AU - Alex Gamburd
TI - Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(F_p)$
JO - Annals of mathematics
PY - 2008
SP - 625
EP - 642
VL - 167
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.625/
DO - 10.4007/annals.2008.167.625
LA - en
ID - 10_4007_annals_2008_167_625
ER -
%0 Journal Article
%A Jean Bourgain
%A Alex Gamburd
%T Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(F_p)$
%J Annals of mathematics
%D 2008
%P 625-642
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2008.167.625/
%R 10.4007/annals.2008.167.625
%G en
%F 10_4007_annals_2008_167_625
Jean Bourgain; Alex Gamburd. Uniform expansion bounds for Cayley graphs of $\mathrm{SL}_2(F_p)$. Annals of mathematics, Tome 167 (2008) no. 2, pp. 625-642. doi: 10.4007/annals.2008.167.625
Cité par Sources :