Bounds for polynomials with a unit discrete norm
Annals of mathematics, Tome 165 (2007) no. 1, pp. 55-88
Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $E$ be the set of $N$ equidistant points in $(-1,1)$ and $\mathbb{P}_n(E)$ be the set of all polynomials $P$ of degree $\le n$ with $\max\{|P(\zeta)|,\zeta\in E\}\le 1$. We prove that \[ K_{n,N}(x)=\max_{P\in\mathbb{P}_n(E)}|P(x)|\le C\log\frac\pi{\arctan(\frac Nn\sqrt{r^2-x^2})}, \] \[ |x|\le r:=\sqrt{1-n^2/N^2} \] where $n\lt N$ and $C$ is an absolute constant. The result is essentially sharp. Bounds for $K_{n,N}(z)$, $z\in\mathbb{C}$, uniform for $n\lt N$, are also obtained.
@article{10_4007_annals_2007_165_55, author = {Evguenii A. Rakhmanov}, title = {Bounds for polynomials with a unit discrete norm}, journal = {Annals of mathematics}, pages = {55--88}, publisher = {mathdoc}, volume = {165}, number = {1}, year = {2007}, doi = {10.4007/annals.2007.165.55}, mrnumber = {2276767}, zbl = {1124.41014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.55/} }
TY - JOUR AU - Evguenii A. Rakhmanov TI - Bounds for polynomials with a unit discrete norm JO - Annals of mathematics PY - 2007 SP - 55 EP - 88 VL - 165 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.55/ DO - 10.4007/annals.2007.165.55 LA - en ID - 10_4007_annals_2007_165_55 ER -
Evguenii A. Rakhmanov. Bounds for polynomials with a unit discrete norm. Annals of mathematics, Tome 165 (2007) no. 1, pp. 55-88. doi: 10.4007/annals.2007.165.55
Cité par Sources :