Weyl’s law for the cuspidal spectrum of $\mathrm{SL}_n$
Annals of mathematics, Tome 165 (2007) no. 1, pp. 275-333
Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $\Gamma$ be a principal congruence subgroup of $\mathrm{SL}_n(\mathbb{Z})$ and let $\sigma$ be an irreducible unitary representation of $\mathrm{SO}(n)$. Let $N^\Gamma_{\mathrm{cu}}(\lambda,\sigma)$ be the counting function of the eigenvalues of the Casimir operator acting in the space of cusp forms for $\Gamma$ which transform under $\mathrm{SO}(n)$ according to $\sigma$. In this paper we prove that the counting function $N^\Gamma_{\mathrm{cu}}(\lambda,\sigma)$ satisfies Weyl’s law. Especially, this implies that there exist infinitely many cusp forms for the full modular group $\mathrm{SL}_n(\mathbb{Z})$.
@article{10_4007_annals_2007_165_275, author = {Werner M\"uller}, title = {Weyl{\textquoteright}s law for the cuspidal spectrum of $\mathrm{SL}_n$}, journal = {Annals of mathematics}, pages = {275--333}, publisher = {mathdoc}, volume = {165}, number = {1}, year = {2007}, doi = {10.4007/annals.2007.165.275}, mrnumber = {2276771}, zbl = {1119.11027}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.275/} }
TY - JOUR AU - Werner Müller TI - Weyl’s law for the cuspidal spectrum of $\mathrm{SL}_n$ JO - Annals of mathematics PY - 2007 SP - 275 EP - 333 VL - 165 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2007.165.275/ DO - 10.4007/annals.2007.165.275 LA - en ID - 10_4007_annals_2007_165_275 ER -
Werner Müller. Weyl’s law for the cuspidal spectrum of $\mathrm{SL}_n$. Annals of mathematics, Tome 165 (2007) no. 1, pp. 275-333. doi: 10.4007/annals.2007.165.275
Cité par Sources :