Voir la notice de l'article provenant de la source Annals of Mathematics website
A Hausdorff measure version of the Duffin-Schaeffer conjecture in metric number theory is introduced and discussed. The general conjecture is established modulo the original conjecture. The key result is a Mass Transference Principle which allows us to transfer Lebesgue measure theoretic statements for lim sup subsets of $\mathbb{R}^k$ to Hausdorff measure theoretic statements. In view of this, the Lebesgue theory of lim sup sets is shown to underpin the general Hausdorff theory. This is rather surprising since the latter theory is viewed to be a subtle refinement of the former.
Victor Beresnevich 1 ; Sanju Velani 1
@article{10_4007_annals_2006_164_971, author = {Victor Beresnevich and Sanju Velani}, title = {A {Mass} {Transference} {Principle} and the {Duffin{\textendash}Schaeffer} conjecture for {Hausdorff} measures}, journal = {Annals of mathematics}, pages = {971--992}, publisher = {mathdoc}, volume = {164}, number = {3}, year = {2006}, doi = {10.4007/annals.2006.164.971}, mrnumber = {2259250}, zbl = {1148.11033}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.971/} }
TY - JOUR AU - Victor Beresnevich AU - Sanju Velani TI - A Mass Transference Principle and the Duffin–Schaeffer conjecture for Hausdorff measures JO - Annals of mathematics PY - 2006 SP - 971 EP - 992 VL - 164 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.971/ DO - 10.4007/annals.2006.164.971 LA - en ID - 10_4007_annals_2006_164_971 ER -
%0 Journal Article %A Victor Beresnevich %A Sanju Velani %T A Mass Transference Principle and the Duffin–Schaeffer conjecture for Hausdorff measures %J Annals of mathematics %D 2006 %P 971-992 %V 164 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.164.971/ %R 10.4007/annals.2006.164.971 %G en %F 10_4007_annals_2006_164_971
Victor Beresnevich; Sanju Velani. A Mass Transference Principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Annals of mathematics, Tome 164 (2006) no. 3, pp. 971-992. doi: 10.4007/annals.2006.164.971
Cité par Sources :