Periodic simple groups of finitary linear transformations
Annals of mathematics, Tome 163 (2006) no. 2, pp. 445-498
Voir la notice de l'article provenant de la source Annals of Mathematics website
A group is locally finite if every finite subset generates a finite subgroup. A group of linear transformations is finitary if each element minus the identity is an endomorphism of finite rank. The classification and structure theory for locally finite simple groups splits naturally into two cases—those groups that can be faithfully represented as groups of finitary linear transformations and those groups that are not finitary linear. This paper completes the finitary case. We classify up to isomorphism those infinite, locally finite, simple groups that are finitary linear but not linear.
@article{10_4007_annals_2006_163_445,
author = {Jonathan I. Hall},
title = {Periodic simple groups of finitary linear transformations},
journal = {Annals of mathematics},
pages = {445--498},
publisher = {mathdoc},
volume = {163},
number = {2},
year = {2006},
doi = {10.4007/annals.2006.163.445},
mrnumber = {2199223},
zbl = {1106.20038},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.445/}
}
TY - JOUR AU - Jonathan I. Hall TI - Periodic simple groups of finitary linear transformations JO - Annals of mathematics PY - 2006 SP - 445 EP - 498 VL - 163 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.445/ DO - 10.4007/annals.2006.163.445 LA - en ID - 10_4007_annals_2006_163_445 ER -
%0 Journal Article %A Jonathan I. Hall %T Periodic simple groups of finitary linear transformations %J Annals of mathematics %D 2006 %P 445-498 %V 163 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2006.163.445/ %R 10.4007/annals.2006.163.445 %G en %F 10_4007_annals_2006_163_445
Jonathan I. Hall. Periodic simple groups of finitary linear transformations. Annals of mathematics, Tome 163 (2006) no. 2, pp. 445-498. doi: 10.4007/annals.2006.163.445
Cité par Sources :