A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group
Annals of mathematics, Tome 162 (2005) no. 2, pp. 711-775

Voir la notice de l'article provenant de la source Annals of Mathematics website

In the process of developing the theory of free probability and free entropy, Voiculescu introduced in 1991 a random matrix model for a free semicircular system. Since then, random matrices have played a key role in von Neumann algebra theory (cf. [V8], [V9]). The main result of this paper is the following extension of Voiculescu’s random matrix result: Let $(X_1^{(n)},\dots,X_r^{(n)})$ be a system of $r$ stochastically independent $n\times n$ Gaussian self-adjoint random matrices as in Voiculescu’s random matrix paper [V4], and let $(x_1,\dots,x_r)$ be a semi-circular system in a $C^*$-probability space. Then for every polynomial $p$ in $r$ noncommuting variables \[ \lim_{n\to\infty} \big\|p\big(X_1^{(n)}(\omega),\dots,X_r^{(n)}(\omega)\big)\big\| =\|p(x_1,\dots,x_r)\|, \] for almost all $\omega$ in the underlying probability space. We use the result to show that the $\mathrm{Ext}$-invariant for the reduced $C^*$-algebra of the free group on 2 generators is not a group but only a semi-group. This problem has been open since Anderson in 1978 found the first example of a $C^*$-algebra $\mathcal{A}$ for which $\mathrm{Ext}(\mathcal{A})$ is not a group.

DOI : 10.4007/annals.2005.162.711

Uffe Haagerup 1 ; Steen Thorbjørnsen 1

1 Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
@article{10_4007_annals_2005_162_711,
     author = {Uffe Haagerup and Steen Thorbj{\o}rnsen},
     title = {A new application of random matrices: {Ext}$(C^*_{\mathrm{red}}(F_2))$ is not a group},
     journal = {Annals of mathematics},
     pages = {711--775},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2005},
     doi = {10.4007/annals.2005.162.711},
     mrnumber = {2183281},
     zbl = {1103.46032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.711/}
}
TY  - JOUR
AU  - Uffe Haagerup
AU  - Steen Thorbjørnsen
TI  - A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group
JO  - Annals of mathematics
PY  - 2005
SP  - 711
EP  - 775
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.711/
DO  - 10.4007/annals.2005.162.711
LA  - en
ID  - 10_4007_annals_2005_162_711
ER  - 
%0 Journal Article
%A Uffe Haagerup
%A Steen Thorbjørnsen
%T A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group
%J Annals of mathematics
%D 2005
%P 711-775
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.711/
%R 10.4007/annals.2005.162.711
%G en
%F 10_4007_annals_2005_162_711
Uffe Haagerup; Steen Thorbjørnsen. A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group. Annals of mathematics, Tome 162 (2005) no. 2, pp. 711-775. doi: 10.4007/annals.2005.162.711

Cité par Sources :