Voir la notice de l'article provenant de la source Annals of Mathematics website
In the process of developing the theory of free probability and free entropy, Voiculescu introduced in 1991 a random matrix model for a free semicircular system. Since then, random matrices have played a key role in von Neumann algebra theory (cf. [V8], [V9]). The main result of this paper is the following extension of Voiculescu’s random matrix result: Let $(X_1^{(n)},\dots,X_r^{(n)})$ be a system of $r$ stochastically independent $n\times n$ Gaussian self-adjoint random matrices as in Voiculescu’s random matrix paper [V4], and let $(x_1,\dots,x_r)$ be a semi-circular system in a $C^*$-probability space. Then for every polynomial $p$ in $r$ noncommuting variables \[ \lim_{n\to\infty} \big\|p\big(X_1^{(n)}(\omega),\dots,X_r^{(n)}(\omega)\big)\big\| =\|p(x_1,\dots,x_r)\|, \] for almost all $\omega$ in the underlying probability space. We use the result to show that the $\mathrm{Ext}$-invariant for the reduced $C^*$-algebra of the free group on 2 generators is not a group but only a semi-group. This problem has been open since Anderson in 1978 found the first example of a $C^*$-algebra $\mathcal{A}$ for which $\mathrm{Ext}(\mathcal{A})$ is not a group.
Uffe Haagerup 1 ; Steen Thorbjørnsen 1
@article{10_4007_annals_2005_162_711, author = {Uffe Haagerup and Steen Thorbj{\o}rnsen}, title = {A new application of random matrices: {Ext}$(C^*_{\mathrm{red}}(F_2))$ is not a group}, journal = {Annals of mathematics}, pages = {711--775}, publisher = {mathdoc}, volume = {162}, number = {2}, year = {2005}, doi = {10.4007/annals.2005.162.711}, mrnumber = {2183281}, zbl = {1103.46032}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.711/} }
TY - JOUR AU - Uffe Haagerup AU - Steen Thorbjørnsen TI - A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group JO - Annals of mathematics PY - 2005 SP - 711 EP - 775 VL - 162 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.711/ DO - 10.4007/annals.2005.162.711 LA - en ID - 10_4007_annals_2005_162_711 ER -
%0 Journal Article %A Uffe Haagerup %A Steen Thorbjørnsen %T A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group %J Annals of mathematics %D 2005 %P 711-775 %V 162 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.711/ %R 10.4007/annals.2005.162.711 %G en %F 10_4007_annals_2005_162_711
Uffe Haagerup; Steen Thorbjørnsen. A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group. Annals of mathematics, Tome 162 (2005) no. 2, pp. 711-775. doi: 10.4007/annals.2005.162.711
Cité par Sources :