Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $g$ be a scattering metric on a compact manifold $X$ with boundary, i.e., a smooth metric giving the interior $X^\circ$ the structure of a complete Riemannian manifold with asymptotically conic ends. An example is any compactly supported perturbation of the standard metric on $\mathrm{R}^n$. Consider the operator $H = \frac{1}{2} \Delta + V$, where $\Delta$ is the positive Laplacian with respect to $g$ and $V$ is a smooth real-valued function on $X$ vanishing to second order at $\partial X$. Assuming that $g$ is nontrapping, we construct a global parametrix $\mathcal{U}(z, w,t)$ for the kernel of the Schrödinger propagator $U(t) = e^{-i t H}$, where $z, w \in X^{\circ}$ and $t \neq 0$. The parametrix is such that the difference between $\mathcal{U}$ and $U$ is smooth and rapidly decreasing both as $t \to 0$ and as $z \to \partial X$, uniformly for $w$ on compact subsets of $X^{\circ}$. Let $r = x^{-1}$, where $x$ is a boundary defining function for $X$, be an asymptotic radial variable, and let $W(t)$ be the kernel $e^{-ir^2/2t}U(t)$. Using the parametrix, we show that $W(t)$ belongs to a class of ‘Legendre distributions’ on $X \times X^{\circ} \times \mathbb{R}_{\geq 0}$ previously considered by Hassell-Vasy. When the metric is trapping, then the parametrix construction goes through microlocally in the nontrapping part of the phase space.
Andrew Hassell 1 ; Jared Wunsch 2
@article{10_4007_annals_2005_162_487, author = {Andrew Hassell and Jared Wunsch}, title = {The {Schr\"odinger} propagator for scattering metrics}, journal = {Annals of mathematics}, pages = {487--523}, publisher = {mathdoc}, volume = {162}, number = {1}, year = {2005}, doi = {10.4007/annals.2005.162.487}, mrnumber = {2178967}, zbl = {1126.58016}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.487/} }
TY - JOUR AU - Andrew Hassell AU - Jared Wunsch TI - The Schrödinger propagator for scattering metrics JO - Annals of mathematics PY - 2005 SP - 487 EP - 523 VL - 162 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.487/ DO - 10.4007/annals.2005.162.487 LA - en ID - 10_4007_annals_2005_162_487 ER -
%0 Journal Article %A Andrew Hassell %A Jared Wunsch %T The Schrödinger propagator for scattering metrics %J Annals of mathematics %D 2005 %P 487-523 %V 162 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.487/ %R 10.4007/annals.2005.162.487 %G en %F 10_4007_annals_2005_162_487
Andrew Hassell; Jared Wunsch. The Schrödinger propagator for scattering metrics. Annals of mathematics, Tome 162 (2005) no. 1, pp. 487-523. doi: 10.4007/annals.2005.162.487
Cité par Sources :