Voir la notice de l'article provenant de la source Annals of Mathematics website
For many classically chaotic systems it is believed that the quantum wave functions become uniformly distributed, that is the matrix elements of smooth observables tend to the phase space average of the observable. In this paper we study the fluctuations of the matrix elements for the desymmetrized quantum cat map. We present a conjecture for the distribution of the normalized matrix elements, namely that their distribution is that of a certain weighted sum of traces of independent matrices in $\mathrm{SU}(2)$. This is in contrast to generic chaotic systems where the distribution is expected to be Gaussian. We compute the second and fourth moment of the normalized matrix elements and obtain agreement with our conjecture.
Pär Kurlberg 1 ; Zeév Rudnick 2
@article{10_4007_annals_2005_161_489, author = {P\"ar Kurlberg and Ze\'ev Rudnick}, title = {On the distribution of matrix elements for the quantum cat map}, journal = {Annals of mathematics}, pages = {489--507}, publisher = {mathdoc}, volume = {161}, number = {1}, year = {2005}, doi = {10.4007/annals.2005.161.489}, mrnumber = {2150390}, zbl = {1082.81054}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.489/} }
TY - JOUR AU - Pär Kurlberg AU - Zeév Rudnick TI - On the distribution of matrix elements for the quantum cat map JO - Annals of mathematics PY - 2005 SP - 489 EP - 507 VL - 161 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.489/ DO - 10.4007/annals.2005.161.489 LA - en ID - 10_4007_annals_2005_161_489 ER -
%0 Journal Article %A Pär Kurlberg %A Zeév Rudnick %T On the distribution of matrix elements for the quantum cat map %J Annals of mathematics %D 2005 %P 489-507 %V 161 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.489/ %R 10.4007/annals.2005.161.489 %G en %F 10_4007_annals_2005_161_489
Pär Kurlberg; Zeév Rudnick. On the distribution of matrix elements for the quantum cat map. Annals of mathematics, Tome 161 (2005) no. 1, pp. 489-507. doi: 10.4007/annals.2005.161.489
Cité par Sources :