Convergence versus integrability in Birkhoff normal form
Annals of mathematics, Tome 161 (2005) no. 1, pp. 141-156
Voir la notice de l'article provenant de la source Annals of Mathematics website
We show that any analytically integrable Hamiltonian system near an equilibrium point admits a convergent Birkhoff normalization. The proof is based on a new, geometric approach to the topic.
@article{10_4007_annals_2005_161_141,
author = {Nguyen Tien Zung},
title = {Convergence versus integrability in {Birkhoff} normal form},
journal = {Annals of mathematics},
pages = {141--156},
publisher = {mathdoc},
volume = {161},
number = {1},
year = {2005},
doi = {10.4007/annals.2005.161.141},
mrnumber = {2150385},
zbl = {1076.37045},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.141/}
}
TY - JOUR AU - Nguyen Tien Zung TI - Convergence versus integrability in Birkhoff normal form JO - Annals of mathematics PY - 2005 SP - 141 EP - 156 VL - 161 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.141/ DO - 10.4007/annals.2005.161.141 LA - en ID - 10_4007_annals_2005_161_141 ER -
%0 Journal Article %A Nguyen Tien Zung %T Convergence versus integrability in Birkhoff normal form %J Annals of mathematics %D 2005 %P 141-156 %V 161 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.161.141/ %R 10.4007/annals.2005.161.141 %G en %F 10_4007_annals_2005_161_141
Nguyen Tien Zung. Convergence versus integrability in Birkhoff normal form. Annals of mathematics, Tome 161 (2005) no. 1, pp. 141-156. doi: 10.4007/annals.2005.161.141
Cité par Sources :