Classification of local conformal nets. Case $c 1$
Annals of mathematics, Tome 160 (2004) no. 2, pp. 493-522
Voir la notice de l'article provenant de la source Annals of Mathematics website
We completely classify diffeomorphism covariant local nets of von Neumann algebras on the circle with central charge $c$ less than 1. The irreducible ones are in bijective correspondence with the pairs of $A$-$D_{2n}$-$E_{6,8}$ Dynkin diagrams such that the difference of their Coxeter numbers is equal to 1.
DOI :
10.4007/annals.2004.160.493
Affiliations des auteurs :
Yasuyuki Kawahigashi 1 ; Roberto Longo 2
@article{10_4007_annals_2004_160_493,
author = {Yasuyuki Kawahigashi and Roberto Longo},
title = {Classification of local conformal nets. {Case} $c < 1$},
journal = {Annals of mathematics},
pages = {493--522},
publisher = {mathdoc},
volume = {160},
number = {2},
year = {2004},
doi = {10.4007/annals.2004.160.493},
mrnumber = {123931},
zbl = {1083.46038},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.493/}
}
TY - JOUR AU - Yasuyuki Kawahigashi AU - Roberto Longo TI - Classification of local conformal nets. Case $c < 1$ JO - Annals of mathematics PY - 2004 SP - 493 EP - 522 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.493/ DO - 10.4007/annals.2004.160.493 LA - en ID - 10_4007_annals_2004_160_493 ER -
%0 Journal Article %A Yasuyuki Kawahigashi %A Roberto Longo %T Classification of local conformal nets. Case $c < 1$ %J Annals of mathematics %D 2004 %P 493-522 %V 160 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.493/ %R 10.4007/annals.2004.160.493 %G en %F 10_4007_annals_2004_160_493
Yasuyuki Kawahigashi; Roberto Longo. Classification of local conformal nets. Case $c < 1$. Annals of mathematics, Tome 160 (2004) no. 2, pp. 493-522. doi: 10.4007/annals.2004.160.493
Cité par Sources :