Voir la notice de l'article provenant de la source Annals of Mathematics website
The uniform spanning forest (USF) in $\mathbb{Z}^d$ is the weak limit of random, uniformly chosen, spanning trees in $[-n,n]^d$. Pemantle [11] proved that the USF consists a.s. of a single tree if and only if $d \le 4$. We prove that any two components of the USF in $\mathbb{Z}^d$ are adjacent a.s. if $5 \le d \le 8$, but not if $d \ge 9$. More generally, let $N(x,y)$ be the minimum number of edges outside the USF in a path joining $x$ and $y$ in $\mathbb{Z}^d$. Then \[ \max\bigl\{N(x,y): x,y\in\mathbb{Z}^d\bigr\} = \bigl\lfloor (d-1)/4 \bigr\rfloor \hbox{ a.s. } \] The notion of stochastic dimension for random relations in the lattice is introduced and used in the proof.
Itai Benjamini 1 ; Harry Kesten 2 ; Yuval Peres 3 ; Oded Schramm 4
@article{10_4007_annals_2004_160_465, author = {Itai Benjamini and Harry Kesten and Yuval Peres and Oded Schramm}, title = {Geometry of the uniform spanning forest: {Transitions} in dimensions 4, 8, 12,{\textellipsis}}, journal = {Annals of mathematics}, pages = {465--491}, publisher = {mathdoc}, volume = {160}, number = {2}, year = {2004}, doi = {10.4007/annals.2004.160.465}, mrnumber = {2123930}, zbl = {1071.60006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.465/} }
TY - JOUR AU - Itai Benjamini AU - Harry Kesten AU - Yuval Peres AU - Oded Schramm TI - Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12,… JO - Annals of mathematics PY - 2004 SP - 465 EP - 491 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.465/ DO - 10.4007/annals.2004.160.465 LA - en ID - 10_4007_annals_2004_160_465 ER -
%0 Journal Article %A Itai Benjamini %A Harry Kesten %A Yuval Peres %A Oded Schramm %T Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12,… %J Annals of mathematics %D 2004 %P 465-491 %V 160 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.465/ %R 10.4007/annals.2004.160.465 %G en %F 10_4007_annals_2004_160_465
Itai Benjamini; Harry Kesten; Yuval Peres; Oded Schramm. Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12,…. Annals of mathematics, Tome 160 (2004) no. 2, pp. 465-491. doi: 10.4007/annals.2004.160.465
Cité par Sources :