Voir la notice de l'article provenant de la source Annals of Mathematics website
Let $\mathcal{T}(x,\varepsilon)$ denote the first hitting time of the disc of radius $\varepsilon$ centered at $x$ for Brownian motion on the two dimensional torus $\mathbb{T}^2$. We prove that $\sup_{x\in \mathbb{T}^2} \mathcal{T}(x,\varepsilon)/|\log \varepsilon|^2 \to 2/\pi$ as $\varepsilon \rightarrow 0$. The same applies to Brownian motion on any smooth, compact connected, two-dimensional, Riemannian manifold with unit area and no boundary. As a consequence, we prove a conjecture, due to Aldous (1989), that the number of steps it takes a simple random walk to cover all points of the lattice torus $\mathbb{Z}_n^2$ is asymptotic to $4n^2(\log n)^2/\pi$. Determining these asymptotics is an essential step toward analyzing the fractal structure of the set of uncovered sites before coverage is complete; so far, this structure was only studied nonrigorously in the physics literature. We also establish a conjecture, due to Kesten and Révész, that describes the asymptotics for the number of steps needed by simple random walk in $\mathbb{Z}^2$ to cover the disc of radius $n$.
Amir Dembo 1 ; Yuval Peres 2 ; Jay Rosen 3 ; Ofer Zeitouni 4
@article{10_4007_annals_2004_160_433, author = {Amir Dembo and Yuval Peres and Jay Rosen and Ofer Zeitouni}, title = {Cover times for {Brownian} motion and random walks in two dimensions}, journal = {Annals of mathematics}, pages = {433--464}, publisher = {mathdoc}, volume = {160}, number = {2}, year = {2004}, doi = {10.4007/annals.2004.160.433}, mrnumber = {2123929}, zbl = {1068.60018}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.433/} }
TY - JOUR AU - Amir Dembo AU - Yuval Peres AU - Jay Rosen AU - Ofer Zeitouni TI - Cover times for Brownian motion and random walks in two dimensions JO - Annals of mathematics PY - 2004 SP - 433 EP - 464 VL - 160 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.433/ DO - 10.4007/annals.2004.160.433 LA - en ID - 10_4007_annals_2004_160_433 ER -
%0 Journal Article %A Amir Dembo %A Yuval Peres %A Jay Rosen %A Ofer Zeitouni %T Cover times for Brownian motion and random walks in two dimensions %J Annals of mathematics %D 2004 %P 433-464 %V 160 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.160.433/ %R 10.4007/annals.2004.160.433 %G en %F 10_4007_annals_2004_160_433
Amir Dembo; Yuval Peres; Jay Rosen; Ofer Zeitouni. Cover times for Brownian motion and random walks in two dimensions. Annals of mathematics, Tome 160 (2004) no. 2, pp. 433-464. doi: 10.4007/annals.2004.160.433
Cité par Sources :