Equivariant de Rham torsions
Annals of mathematics, Tome 159 (2004) no. 1, pp. 53-216
Voir la notice de l'article provenant de la source Annals of Mathematics website
The purpose of this paper is to give an explicit local formula for the difference of two natural versions of equivariant analytic torsion in de Rham theory. This difference is the sum of the integral of a Chern-Simons current and of a new invariant, the \( V \)-invariant of an odd dimensional manifold equipped with an action of a compact Lie group. The \( V \)-invariant localizes on the critical manifolds of invariant Morse-Bott functions.
DOI :
10.4007/annals.2004.159.53
Affiliations des auteurs :
Jean-Michel Bismut 1 ; Sebastian Goette 2
@article{10_4007_annals_2004_159_53, author = {Jean-Michel Bismut and Sebastian Goette}, title = {Equivariant de {Rham} torsions}, journal = {Annals of mathematics}, pages = {53--216}, publisher = {mathdoc}, volume = {159}, number = {1}, year = {2004}, doi = {10.4007/annals.2004.159.53}, mrnumber = {2051391}, zbl = {1094.58013}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.53/} }
TY - JOUR AU - Jean-Michel Bismut AU - Sebastian Goette TI - Equivariant de Rham torsions JO - Annals of mathematics PY - 2004 SP - 53 EP - 216 VL - 159 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.53/ DO - 10.4007/annals.2004.159.53 LA - en ID - 10_4007_annals_2004_159_53 ER -
Jean-Michel Bismut; Sebastian Goette. Equivariant de Rham torsions. Annals of mathematics, Tome 159 (2004) no. 1, pp. 53-216. doi: 10.4007/annals.2004.159.53
Cité par Sources :