Voir la notice de l'article provenant de la source Annals of Mathematics website
We investigate the relationship between an open simply-connected region $\Omega\subset \mathbb{S}^2$ and the boundary $Y$ of the hyperbolic convex hull in $\mathbb{H}^3$ of $\mathbb{S}^2\setminus\Omega$. A counterexample is given to Thurston’s conjecture that these spaces are related by a 2-quasiconformal homeomorphism which extends to the identity map on their common boundary, in the case when the homeomorphism is required to respect any group of Möbius transformations which preserves $\Omega$. We show that the best possible universal lipschitz constant for the nearest point retraction $r:\Omega\to Y$ is 2. We find explicit universal constants $0 < c_2 < c_1$, such that no pleating map which bends more than $c_1$ in some interval of unit length is an embedding, and such that any pleating map which bends less than $c_2$ in each interval of unit length is embedded. We show that every $K$-quasiconformal homeomorphism $\mathbb{D}^2\to\mathbb{D}^2$ is a $(K,a(K))$-quasi-isometry, where $a(K)$ is an explicitly computed function. The multiplicative constant is best possible and the additive constant $a(K)$ is best possible for some values of $K$.
David B. A. Epstein 1 ; Albert Marden 2 ; Vladimir Markovic 1
@article{10_4007_annals_2004_159_305,
author = {David B. A. Epstein and Albert Marden and Vladimir Markovic},
title = {Quasiconformal homeomorphisms and the convex hull boundary},
journal = {Annals of mathematics},
pages = {305--336},
publisher = {mathdoc},
volume = {159},
number = {1},
year = {2004},
doi = {10.4007/annals.2004.159.305},
mrnumber = {2052356},
zbl = {1064.30044},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.305/}
}
TY - JOUR AU - David B. A. Epstein AU - Albert Marden AU - Vladimir Markovic TI - Quasiconformal homeomorphisms and the convex hull boundary JO - Annals of mathematics PY - 2004 SP - 305 EP - 336 VL - 159 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.305/ DO - 10.4007/annals.2004.159.305 LA - en ID - 10_4007_annals_2004_159_305 ER -
%0 Journal Article %A David B. A. Epstein %A Albert Marden %A Vladimir Markovic %T Quasiconformal homeomorphisms and the convex hull boundary %J Annals of mathematics %D 2004 %P 305-336 %V 159 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.305/ %R 10.4007/annals.2004.159.305 %G en %F 10_4007_annals_2004_159_305
David B. A. Epstein; Albert Marden; Vladimir Markovic. Quasiconformal homeomorphisms and the convex hull boundary. Annals of mathematics, Tome 159 (2004) no. 1, pp. 305-336. doi: 10.4007/annals.2004.159.305
Cité par Sources :